首页 | 本学科首页   官方微博 | 高级检索  
     


Linear statistics of matrix ensembles in classical background
Authors:Chao Min  Yang Chen
Affiliation:Department of Mathematics, University of Macau, Macau, China
Abstract:Given a joint probability density function of N real random variables, urn:x-wiley:mma:media:mma3824:mma3824-math-0001, obtained from the eigenvector–eigenvalue decomposition of N × N random matrices, one constructs a random variable, the linear statistics, defined by the sum of smooth functions evaluated at the eigenvalues or singular values of the random matrix, namely, urn:x-wiley:mma:media:mma3824:mma3824-math-0002. For the joint PDFs obtained from the Gaussian and Laguerre ensembles, we compute, in this paper, the moment‐generating function urn:x-wiley:mma:media:mma3824:mma3824-math-0003, where urn:x-wiley:mma:media:mma3824:mma3824-math-0004 denotes expectation value over the orthogonal (β = 1) and symplectic (β = 4) ensembles, in the form one plus a Schwartz function, none vanishing over urn:x-wiley:mma:media:mma3824:mma3824-math-0005 for the Gaussian ensembles and urn:x-wiley:mma:media:mma3824:mma3824-math-0006 for the Laguerre ensembles. These are ultimately expressed in the form of the determinants of identity plus a scalar operator, from which we obtained the large N asymptotic of the linear statistics from suitably scaled F(·). Copyright © 2016 John Wiley & Sons, Ltd.
Keywords:random matrices  linear spectral statistics  orthogonal polynomials  asymptotics
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号