Structural elucidation of rat biliary metabolites of corynoxeine and their quantification using LC‐MSn |
| |
Authors: | Wei Wang Xinmei Li Yaping Chen Masao Hattori |
| |
Affiliation: | 1. School of Pharmaceutical Sciences and Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan, People's Republic of China;2. Division of Metabolic Engineering, Institute of Natural Medicine, University of Toyama, Toyama, Japan |
| |
Abstract: | Corynoxeine (COR) is one of 4 bioactive oxindole alkaloids in Uncaria species. In this work two phase I metabolites, namely 11‐hydroxycorynoxeine (M1) and 10‐hydroxycorynoxeine (M2), and two phase II metabolites, namely 11‐hydroxycorynoxeine 11‐O‐β‐d ‐glucuronide (M3) and 10‐hydroxycorynoxeine 10‐O‐β‐d ‐glucuronide (M4), were detected in rat bile after oral dose of COR (0.105 mmol/kg), by optimized high‐performance liquid chromatography–tandem mass spectrometry (LC‐MSn) with electrospray ionization in positive ion mode. Structures of M1–4 were determined by LC‐MSn, nuclear magnetic resonance, circular dichroism and high‐resolution MS spectra. COR and its metabolites in rat bile were quantified by LC‐MSn. The LC‐MSn quantification methods for COR and its metabolites yielded a linearity with coefficient of determination ≥0.995 from 5.0 × 10?10 to 5.0 × 10?7 m . The recoveries of stability tests varied from 96.80 to 103.10%. Accuracy ranged from 91.00 to 105.20%. Relative standard deviation for intra‐day and inter‐day assay was <5.0%. After the oral dose 0.14% of COR was detected in rat bile from 0 to 8 h, in which in total 97.8% COR biotransformed into M1–4. M1 and M2 yielded 48.1 and 49.7%, which successively glucuronidated to M3 and M4 at 47.2 and 43.8%, respectively. Copyright © 2014 John Wiley & Sons, Ltd. |
| |
Keywords: | corynoxeine rat biliary metabolites structural elucidation quantification LC‐MSn |
|
|