首页 | 本学科首页   官方微博 | 高级检索  
     

基于嵌入式GPU的运动目标分割算法并行优化
引用本文:张刚,马震环,雷涛,崔毅,张三喜. 基于嵌入式GPU的运动目标分割算法并行优化[J]. 应用光学, 2019, 40(6): 1067-1076. DOI: 10.5768/JAO201940.0602004
作者姓名:张刚  马震环  雷涛  崔毅  张三喜
作者单位:1.中国科学院大学,北京100049
基金项目:中科院青年创新促进会基金2016336
摘    要:在光电监视系统中,广泛应用于运动目标分割的PBAS(pixel base adaptive segmenter)算法计算复杂、参数量大,难以达到实时分割的要求。针对PBAS算法是对图像中每个像素点进行独立处理,特别适合于GPU并行加速的特点,对其在嵌入式GPU平台Jetson TX2上进行了并行优化实现。在数据存储结构、共享内存使用、随机数产生机制3个方面对该算法进行了优化设计。实验结果表明,对于480×320像素分辨率的中波红外视频序列,该并行优化方法可以达到132 fps的处理速度,满足了实时处理的要求。

关 键 词:运动目标分割   并行优化   PBAS   GPU
收稿时间:2019-06-10

Embedded GPU-based parallel optimization for moving objects segmentation algorithm
Affiliation:1.University of Chinese Academy of Sciences, Beijing 100049, China2.Institute of Optics and Electronics, CAS, Chengdu 610209, China3.China Huayin Ordnance Test Center, Huayin 714200, China
Abstract:In optoelectronic surveillance systems, the pixel base adaptive segmenter (PBAS) algorithm, which is widely used in moving objects segmentation, is hard to meet the requirements of real-time applications due to its calculating complication and a large amount of computing parameters. With its pixel-level parallelism, deploying PBAS on top of graphic processing unit (GPU) is promising. This paper implements real-time optimization of PBAS on embedded GPU platform-Jetson TX2, employing methods of data storage architecture, shared memory utilization and random number generation. Experimental results show that the parallel optimization method can achieve 132 fps when processing 480×320 pixel medium-wave infrared video sequences, thus meets the real-time processing need.
Keywords:
本文献已被 CNKI 等数据库收录!
点击此处可从《应用光学》浏览原始摘要信息
点击此处可从《应用光学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号