固定时间梯度流在?_1-?_2范数中的稀疏重构 |
| |
摘 要: | 压缩感知(compressed sensing,CS)是一种全新的信号采样技术,对于稀疏信号,它能够以远小于传统的Nyquist采样定理的采样点来重构信号.在压缩感知中,采用动态连续系统,对?_1-?_2范数的稀疏信号重构问题进行了研究.提出了一种基于固定时间梯度流的稀疏信号重构算法,证明了该算法在Lyapunov意义上的稳定性并且收敛于问题的最优解.最后通过与现有的投影神经网络算法的对比,体现了该算法的可行性以及在收敛速度上的优势.
|
本文献已被 CNKI 等数据库收录! |
|