Dynamical correlation functions of the quadratic coupling spin-Boson model |
| |
Affiliation: | Department of Physics, Renmin University of China, Beijing 100872, China |
| |
Abstract: | The spin-boson model with quadratic coupling is studied using the bosonic numerical renormalization group method. We focus on the dynamical auto-correlation functions CO(ω), with the operator Ô taken as σx, σz, and X, respectively. In the weak-coupling regime α < αc, these functions show power law ω-dependence in the small frequency limit, with the powers 1+2s, 1+2s, and s, respectively. At the critical point α=αc of the boson-unstable quantum phase transition, the critical exponents yO of these correlation functions are obtained as yσx=yσz=1-2s and yX=-s, respectively. Here s is the bath index and X is the boson displacement operator. Close to the spin flip point, the high frequency peak of Cσx(ω) is broadened significantly and the line shape changes qualitatively, showing enhanced dephasing at the spin flip point. |
| |
Keywords: | quadratic-coupling spin-boson model numerical renormalization group quantum phase transition dynamical correlation function |
本文献已被 CNKI 等数据库收录! |
| 点击此处可从《中国物理 B》浏览原始摘要信息 |
|
点击此处可从《中国物理 B》下载免费的PDF全文 |
|