首页 | 本学科首页   官方微博 | 高级检索  
     

运用机器学习方法设计原子链 人工边界条件
引用本文:张慊,乔丹,唐少强. 运用机器学习方法设计原子链 人工边界条件[J]. 力学与实践, 2020, 42(1): 13-16. DOI: 10.6052/1000-0879-19-412
作者姓名:张慊  乔丹  唐少强
作者单位:北京大学工学院力学与工程科学系;北京大学数学科学学院概率统计系
基金项目:1) 国家自然科学基金资助项目(11832001)
摘    要:本文运用机器学习方法设计一维线性原子链的人工边界条件。该方法基于前馈神经网络,通过对一小部分数值解进行训练后得到人工边界条件。应用该法不需要较多先验知识,编程简单,实现速度快,算例表明数值反射较小。

关 键 词:分子动力学模拟  人工边界条件  机器学习  前馈神经网络
收稿时间:2019-11-11

DESIGNING ARTIFICIAL BOUNDARY CONDITIONS FOR ATOMIC CHAINS BY MACHINE LEARNING 1)
ZHANG Qian,QIAO Dan,TANG Shaoqiang. DESIGNING ARTIFICIAL BOUNDARY CONDITIONS FOR ATOMIC CHAINS BY MACHINE LEARNING 1)[J]. Mechanics and Engineering, 2020, 42(1): 13-16. DOI: 10.6052/1000-0879-19-412
Authors:ZHANG Qian  QIAO Dan  TANG Shaoqiang
Affiliation:(Department of Mechanics and Engineering Science,College of Engineering,Peking University,Beijing 100871,China;Department of Probability and Statistics,School of Mathematical Sciences,Peking University,Beijing 100871,China)
Abstract:In this paper, we adopt machine learning techniques to design artificial boundary conditions for one-dimensional linear atomic chain. Training a feedforward neural network with a small amount of numerical solutions, we obtain artificial boundary conditions. This approach requires little prior information, and programming and computation are fast. Numerical examples illustrate a relatively small reflection.
Keywords:molecular dynamics simulation  artificial boundary conditions  machine learning  feedforward neural network  
本文献已被 维普 等数据库收录!
点击此处可从《力学与实践》浏览原始摘要信息
点击此处可从《力学与实践》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号