首页 | 本学科首页   官方微博 | 高级检索  
     

水分子在氢化锂表面的吸附行为
引用本文:刘城, 雷洁红. 水分子在氢化锂表面的吸附行为[J]. 强激光与粒子束, 2020, 32: 102001. doi: 10.11884/HPLPB202032.200217
作者姓名:刘城  雷洁红
作者单位:1.西华师范大学 物理与空间科学学院,四川 南充 637001;;2.中国工程物理研究院 激光聚变研究中心,四川 绵阳 621900
基金项目:国家自然科学基金项目(11805157);四川省科技厅应用基础面上项目(2017JY0146);西华师范大学科研创新团队项目(CXTD2016-2);西华师范大学英才科研基金项目(CXTD2017-10)
摘    要:运用理论分析方法计算研究了水分子在氢化锂表面的吸附行为,分析了氢化锂表面改性对其疏水性能的影响。结果表明,在LiH-111面和LiH-100面上构建槽结构、柱状结构后,水分子在其上的吸附力比完整表面更强,说明表面微结构的引入的确改变了势能分布。壁相交处存在势能叠加,加强了吸附水分子的能力,但是没有引起表面的亲水性能变化。水分子可以稳定的吸附在完美的LiH(001)表面,其解离能垒仅为0.386 eV,这一解离反应在室温下完全可以进行。水分子极易在具有结构缺陷的LiH表面解离,这是LiH在一定湿度的空气和水环境中极易分解的根本原因。

关 键 词:氢化锂   吸附行为   疏水性   反应动力学
收稿时间:2020-07-26
修稿时间:2020-09-03

Adsorption behavior of water molecules on the surface of lithium hydride
Liu Cheng, Lei Jiehong. Adsorption behavior of water molecules on the surface of lithium hydride[J]. High Power Laser and Particle Beams, 2020, 32: 102001. doi: 10.11884/HPLPB202032.200217
Authors:Liu Cheng  Lei Jiehong
Affiliation:1. Physics and Space Science College, China West Normal University, Nanchong 637001, China;;2. Laser Fusion Research Center, CAEP, P. O. Box 919-988, Mianyang 621900, China
Abstract:The theoretical analysis method is used to calculate the adsorption behavior of water molecules on the surface of lithium hydride, and analyze the influence of surface modification of lithium hydride on its hydrophobic performance. The results show that after constructing groove structure and columnar structure on LiH-111 surface and LiH-100 surface, the adsorption force to water molecules of the modified surface is stronger than that of the complete surface, indicating that the introduction of surface microstructure does change the potential energy distribution. There is a superposition of potential energy at the intersection of the walls, which strengthens the ability to adsorb water molecules, but does not cause changes in the hydrophilic properties of the surface. Water molecules can be stably adsorbed on the perfect LiH (001) surface, and its dissociation energy barrier is only 0.386 eV. This dissociation reaction can be carried out at room temperature. Water molecules are easily dissociated on the LiH surface with structural defects, which is the fundamental reason why LiH decomposes easily in a certain humidity air and water environment.
Keywords:lithium hydride  adsorption behavior  hydrophobicity  kinetics
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《强激光与粒子束》浏览原始摘要信息
点击此处可从《强激光与粒子束》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号