Liquid Metal Superelastic Fiber Mat Enabling Highly Permeable Wearable Electronics Toward Comfortable e-Skins |
| |
Authors: | HANDSCHUH-WANG Stephan ZHOU Xuechang |
| |
Affiliation: | College of Chemistry and Environmental Engineering,Shenzhen University,Shenzhen 518060,P.R.China |
| |
Abstract: | Low water vapor and air permeability is a persistent challenge in wearable and on-skin electronics, as it reduces wearing comfort, and leads to skin irritation and inflammation in the long term. To tackle this issue, Zheng and coworkers designed a stretchable conductor based on an elastomeric fiber mat coated by liquid metal. After simple activation via stretching, the flexible conductor was endowed with excellent permeability, good stretchability, exceptional electrical stability, and good biocompatibility, ascribed to the mesh-like structure and the vertically buckled structure of the liquid metal. Based on the intriguing properties of the material, it was employed in a multi-functional wearable device, able to detect the heartbeat and sweat while serving as a heating device. The corresponding research has been published in Nature Materials and can be accessed at https://doi.org/10.1038/s41563-020-00902-3. |
| |
Keywords: | |
本文献已被 万方数据 等数据库收录! |
| 点击此处可从《高等学校化学研究》浏览原始摘要信息 |
|
点击此处可从《高等学校化学研究》下载全文 |
|