首页 | 本学科首页   官方微博 | 高级检索  
     


Improved algorithm for solving nonlinear parabolized stability equations
Affiliation:Department of Mechanics, Tianjin University, Tianjin 300072, China
Abstract:Due to its high computational efficiency and ability to consider nonparallel and nonlinear effects, nonlinear parabolized stability equations(NPSE) approach has been widely used to study the stability and transition mechanisms. However,it often diverges in hypersonic boundary layers when the amplitude of disturbance reaches a certain level. In this study, an improved algorithm for solving NPSE is developed. In this algorithm, the mean flow distortion is included into the linear operator instead of into the nonlinear forcing terms in NPSE. An under-relaxation factor for computing the nonlinear terms is introduced during the iteration process to guarantee the robustness of the algorithm. Two case studies, the nonlinear development of stationary crossflow vortices and the fundamental resonance of the second mode disturbance in hypersonic boundary layers, are presented to validate the proposed algorithm for NPSE. Results from direct numerical simulation(DNS) are regarded as the baseline for comparison. Good agreement can be found between the proposed algorithm and DNS, which indicates the great potential of the proposed method on studying the crossflow and streamwise instability in hypersonic boundary layers.
Keywords:improved NPSE approach  stationary crossflow vortices  fundamental resonance  hypersonic boundary layers  
本文献已被 CNKI 等数据库收录!
点击此处可从《中国物理 B》浏览原始摘要信息
点击此处可从《中国物理 B》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号