首页 | 本学科首页   官方微博 | 高级检索  
     


Molecular dynamics study of the mechanical characteristics of Ni/Cu bilayer using nanoindentation
Authors:Muhammad Imran,  Fayyaz Hussain,  Muhammad Rashid,  S. A. Ahmad
Affiliation:[1]Department of Physics, Simulation Laboratory, The Islamia University of 13ahawalpur, 63100, Pakistan; [2]Department of Physics, National University of Singapore, 2 Science Drive 3, 117542 Singapore
Abstract:In the present work,a three-dimensional molecular dynamics simulation is carried out to perform the nanoindentation experiment on Ni single crystal.The substrate indenter system is modeled using hybrid interatomic potentials including the many-body potential embedded atom method(EAM),and two-body morse potential.To simulate the indentation process,a spherical indenter(diameter = 80 A,1 A=0.1 nm) is chosen.The results show that the mechanical behaviour of a monolithic Ni is not affected by crystalline orientation.To elucidate the effect of a heterogeneous interface, three bilayer interface systems are constructed,namely Ni(100)/Cu(111),Ni(110)/Cu(111),and Ni(111)/Cu(111).The simulations along these systems clearly describe that mechanical behaviour directly depends on the lattice mismatch. The interface with the smaller mismatch between the specified crystal planes is proved to be harder and vice versa.To describe the relationship between film thickness and interface effect,we choose various values of film thickness ranging from 20 A to 50 A to perform the nanoindentation experiment.It is observed that the interface is significant only for the relatively small thickness of film and the separation between interface and the indenter tip.It is shown that with the increase in film thickness,the mechanical behaviour of the film shifts more toward that of monolithic material.
Keywords:nanoindentation   bilayer   molecular dynamics   thin film
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号