首页 | 本学科首页   官方微博 | 高级检索  
     

飞机机翼损伤的气动模型及故障诊断研究
引用本文:邱岳恒, 赵鹏轩, 陈伟, 王晓光. 飞机机翼损伤的气动模型及故障诊断研究[J]. 力学与实践, 2014, 36(1): 23-28. doi: 10.6052/1000-0879-13-346
作者姓名:邱岳恒  赵鹏轩  陈伟  王晓光
作者单位:1 中航工业第一飞机设计研究院飞控液压所, 西安710089; 2 西北工业大学自动化学院, 西安710072
基金项目:国家自然科学基金(60974146);航空科学基金(20100753009)资助项目
摘    要:为了确保机翼损伤后飞机的飞行安全,提出了一种在线的故障诊断方法. 首先,根据输入输出特性,采用遗忘因子递推最小二乘法对飞机故障后的气动导数进行辨识,建立了机翼损伤故障的数学模型;然后,结合多模型方法和中心差分卡尔曼滤波器(central difference Kalman filter,CDKF)各自的优点,实现对机翼损伤的故障诊断,并采用强跟踪滤波器在线更新CDKF 的采样点,以增强CDKF 的自适应能力. 最后,通过仿真结果验证了本文所提方法的有效性.

关 键 词:机翼损伤   气动导数   最小二乘法   中心差分卡尔曼滤波器
收稿时间:2013-08-19
修稿时间:2013-12-12

THE FAULT DIAGNOSIS AND AERODYNAMIC MODEL FOR AIRCRAFT WING DAMAGE
QIU Yueheng, ZHAO Pengxuan, CHEN Wei, WANG Xiaoguang. THE FAULT DIAGNOSIS AND AERODYNAMIC MODEL FOR AIRCRAFT WING DAMAGE[J]. Mechanics in Engineering, 2014, 36(1): 23-28. doi: 10.6052/1000-0879-13-346
Authors:QIU Yueheng  ZHAO Pengxuan  CHEN Wei  WANG Xiaoguang
Affiliation:1 Flight Control and Hydraulic System Design Institute, First Aircraft Design Institute of AVIC, Xi'an 710089, China; 2 College of Automation, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:To ensure the flight safety under the condition of the wing damage in the aircraft, a new online fault diagnosis method is proposed based on the nonlinear aerodynamic model of the wing damage. Firstly, according to the input and output characteristics of the aircraft, the aerodynamic derivatives can be identified online using the recursive least squares algorithm with a forgetting factor, and the wing damage model can be established as the aerodynamic derivatives are substituted into the equation of the aircraft motion. Secondly, the fault diagnosis approach is proposed based on the multi-model algorithm and the central difference Kalman filter algorithm, and the adaptive capacity of the central difference Kalman filter algorithm can be strengthened as the sampling points are updated online using the strategy of a strong tracking filter. Lastly, in the presence of various wing damage faults, the simulation results indicate that the proposed algorithm can not only improve the experiment effciency but also ensure the fault coverage as compared with other algorithms.
Keywords:wing damage  aerodynamic derivative  least square algorithm  central difference Kalman filter
本文献已被 CNKI 等数据库收录!
点击此处可从《力学与实践》浏览原始摘要信息
点击此处可从《力学与实践》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号