Abstract: | The separation and determination of proteins in food is an important aspect in food industry. Inspired by the self‐polymerization of dopamine under alkaline conditions and the natural adhesive properties of polydopamine, in this paper, a simple and economical method was developed for the preparation of polydopamine‐coated open tubular column, in which ammonium persulfate was used as the source of oxygen to induce and facilitate the polymerization of dopamine to form polydopamine. In comparison with a naked fused‐silica capillary, the direction and magnitude of the electro‐osmotic flow of the as‐prepared polydopamine‐coated open tubular column could be manipulated by varying the pH values of background solutions due to the existence of amine and phenolic hydroxyl groups on polydopamine coating. The surface morphology of the polydopamine‐coated open tubular column was studied by scanning electron microscopy, and the thickness of polydopamine coating was 106 nm. The performance of the polydopamine‐coated open tubular column was validated by analysis of proteins. The relative standard deviations of migration times of proteins representing run‐to‐run, day‐to‐day, and column‐to‐column were less than 3.5%. In addition, the feasibility of the polydopamine‐coated open tubular column for real samples was verified by the separation of proteins in chicken egg white and pure milk. |