首页 | 本学科首页   官方微博 | 高级检索  
     

低维纳米材料热电性能测试方法研究
引用本文:魏江涛,杨亮亮,秦源浩,宋培帅,张明亮,杨富华,王晓东. 低维纳米材料热电性能测试方法研究[J]. 物理学报, 2021, 0(4): 22-41
作者姓名:魏江涛  杨亮亮  秦源浩  宋培帅  张明亮  杨富华  王晓东
作者单位:中国科学院半导体研究所半导体集成技术工程研究中心;中国科学院大学微电子学院及材料与光电研究中心;北京量子信息科学研究院;北京市半导体微纳集成工程技术研究中心
基金项目:国家重点研发计划(批准号:2019YFB1503602,2018YFB1107502);中国科学院先导B项目(批准号:XDB43020500);中国科学院科研仪器设备研制项目(批准号:GJJSTD20200006)资助的课题.
摘    要:通过近几十年的研究,人们对于块体及薄膜材料的热电性能已经有了较全面的认识,热电优值ZT的提高取得了飞速的进展,比如碲化铋相关材料、硒化亚铜相关材料、硒化锡相关材料的最大ZT值都突破了2.但是,这些体材料的热电优值距离大规模实用仍然有较大的差距.通过理论计算得知,当块体热电材料被制作成低维纳米结构材料时,比如二维纳米薄膜、一维纳米线,热电性能会得到显著的改善,具有微纳米结构材料的热电性能研究引起了科研人员的极大兴趣.当块体硅被制作成硅纳米线时,热电优值改善了将近100倍.然而,微纳米材料的热电参数测量极具挑战,因为块体材料的热电参数测量方法和测试平台已经不再适用于低维材料,需要开发出新的测量方法和测试平台用来研究低维材料的热导率、电导率和塞贝克系数.本文综述了几种用于精确测量微纳米材料热电参数的微机电结构,包括双悬空岛、单悬空岛、悬空四探针结构,详细介绍了每一种微机电结构的制备方法、测量原理以及对微纳米材料热电性能测试表征的实例.

关 键 词:热电效应  纳米材料  微机电结构  热导率

Methodology of teasting thermoelectric properties of low-dimensional nanomaterials
Wei Jiang-Tao,Yang Liang-Liang,Qin Yuan-Hao,Song Pei-Shuai,Zhang Ming-Liang,Yang Fu-Hua,Wang Xiao-Dong. Methodology of teasting thermoelectric properties of low-dimensional nanomaterials[J]. Acta Physica Sinica, 2021, 0(4): 22-41
Authors:Wei Jiang-Tao  Yang Liang-Liang  Qin Yuan-Hao  Song Pei-Shuai  Zhang Ming-Liang  Yang Fu-Hua  Wang Xiao-Dong
Affiliation:(Engineering Research Center for Semiconductor Integrated Technology,Institute of Semiconductors,Chinese Academy of Sciences,Beijing 100083,China;College of Microelectronics and Research Center of Materials and Optoelectronics,University of Chinese Academy of Sciences,Beijing 100049,China;Beijing Institute of Quantum Information Science,Beijing 100193,China;Beijing Semiconductor Micro/Nano Integrated Engineering Technology Research Center,Beijing 100083,China)
Abstract:Through the research in recent decades,one has a comprehensive understanding of the thermoelectric properties of bulk and thin film materials,and made rapid progress of improving the thermoelectric figure of merit ZT,for instance,the maximum ZT values of bismuth telluride related materials,cuprous selenide related materials and tin selenide related materials all exceed 2.However,these bulk materials are still far from the requirements for their practical applications on a large scale.The theoretical calculations show that when bulk thermoelectric materials are made a low-dimensional nanostructured materials,such as two-dimensional nanofilms and one-dimensional nano wires,their thermoelectric properties will be significantly improved.Taking silicon for example,when the bulk silicon is made silicon nano wires,the ZT value increases nearly a hundredfold.Hence,researches of the thermoelectric performances of materials with micro-nano structures have received great attention.However,the measurement of thermoelectric parameters of low-dimensional materials has brought challenges to researchers,for the traditional measurement methods or test platforms designed for bulk materials are no longer suitable for measuring thermoelectric parameters(thermal conductivity,electrical conductivity and Seebeck coefficient) of low-dimensional materials.Therefore,new measurement methods and test platforms need developing.In this case,micro-electromechanical system micro-suspended structure came into being.In this approach used are the separated samples and substrates,and isolated heat transfer channels,with which the thermal parameters of micro/nano materials can be accurately measured,and the sensitivity of thermal conductance can reach 10 PW/K.In this review,the structures of several micro-electromechanical systems used to measure the thermoelectric properties of low-dimensional nanostructures are introduced,including double suspended islands,single suspended islands and suspended four-probe structures.Meanwhile,the fabrication methods and measurement principles of these MEMS structures and thermoelectric properties of micro-nano structure materials are described in detail.
Keywords:thermoelectric effects  nanomaterials  micro-electromechanical system structure  thermal conductivity
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号