Molecular dynamics study of coupled layer thickness and strain rate effect on tensile behaviors of Ti/Ni multilayered nanowires |
| |
Affiliation: | 1.Fundamental Science on Aircraft Structural Mechanics and Strength Laboratory, Northwestern Polytechnical University, Xi'an 710072, China;2.School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;3 1001 Factory of the Chinese People's Liberation Army, Xi'an 710119, China;4.College of Materials Science and Engineering, Xi'an Shiyou University, Xi'an 710065, China |
| |
Abstract: | Novel properties and applications of multilayered nanowires (MNWs) urge researchers to understand their mechanical behaviors comprehensively. Using the molecular dynamic simulation, tensile behaviors of Ti/Ni MNWs are investigated under a series of layer thickness values (1.31, 2.34, and 7.17 nm) and strain rates (1.0×108 s-1≤$dot varepsilon$≤ 5.0×1010 s-1). The results demonstrate that deformation mechanisms of isopachous Ti/Ni MNWs are determined by the layer thickness and strain rate. Four distinct strain rate regions in the tensile process can be discovered, which are small, intermediate, critical, and large strain rate regions. As the strain rate increases, the initial plastic behaviors transform from interface shear (the shortest sample) and grain reorientation (the longest sample) in small strain rate region to amorphization of crystalline structures (all samples) in large strain rate region. Microstructure evolutions reveal that the disparate tensile behaviors are ascribed to the atomic fractions of different structures in small strain rate region, and only related to collapse of crystalline atoms in high strain rate region. A layer thickness-strain rate-dependent mechanism diagram is given to illustrate the couple effect on the plastic deformation mechanisms of the isopachous nanowires. The results also indicate that the modulation ratio significantly affects the tensile properties of unequal Ti/Ni MNWs, but barely affect the plastic deformation mechanisms of the materials. The observations from this work will promote theoretical researches and practical applications of Ti/Ni MNWs. |
| |
Keywords: | molecular dynamics Ti/Ni multilayered nanowires coupled layer thickness-strain rate effect plastic deformation mechanisms |
本文献已被 CNKI 等数据库收录! |
| 点击此处可从《中国物理 B》浏览原始摘要信息 |
|
点击此处可从《中国物理 B》下载免费的PDF全文 |
|