首页 | 本学科首页   官方微博 | 高级检索  
     

基于主成分分析和分层树集合划分的Huffman算法图像压缩研究
引用本文:方炫苏,黄樟灿,陈亚雄. 基于主成分分析和分层树集合划分的Huffman算法图像压缩研究[J]. 浙江大学学报(理学版), 2018, 45(1): 54-59. DOI: 10.3785/j.issn.1008-9497.2018.01-009
作者姓名:方炫苏  黄樟灿  陈亚雄
作者单位:武汉理工大学 理学院, 湖北 武汉 430070
基金项目:国家科技支撑计划项目(2013BAJ02B00).
摘    要:互联网的飞速发展,产生了大量的图像信息.为了减少图片占用的存储空间,提高图像质量,提出了一种将主成分分析(PCA)和分层树集合划分(SPIHT)压缩算法相结合的有损图像压缩算法.首先对图像进行主成分分解,选取主要特征值进行压缩,再利用SPIHT算法将图像分解成不同子带的小波系数进行压缩,对SPIHT压缩系数进行哈夫曼编码,实现图像二级压缩.将本文提出的算法与SPIHT、SPIHT的哈夫曼编码、JEPG2000、PCA压缩算法进行了比较,结果表明本算法较其他压缩算法具有更好的性能,在压缩比相同的情况下能获得更高的PNSR和SSIM.

关 键 词:PCA  SPIHT  Huffman  图像压缩  PNSR  SSIM  
收稿时间:2016-12-08

Research on Huffman algorithm based on PCA and SPIHT for image compression
FANG Xiansu,HUANG Zhangcan,CHEN Yaxiong. Research on Huffman algorithm based on PCA and SPIHT for image compression[J]. Journal of Zhejiang University(Sciences Edition), 2018, 45(1): 54-59. DOI: 10.3785/j.issn.1008-9497.2018.01-009
Authors:FANG Xiansu  HUANG Zhangcan  CHEN Yaxiong
Affiliation:School of Science, Wuhan University of Technology, Wuhan 430070, China
Abstract:In order to reduce the storage and improve the image quality of the compressed, a lossy image compression algorithm based on principal component analysis and set partitioning in hierarchical tree(SPIHT)compression algorithm is proposed. Firstly, the image is decomposed by principal component decomposition, and the main features are selected to realize image compression, then SPIHT algorithm is used to compress the image into wavelet coefficients of different subband. Finally, Huffman coding is employed to achieve two-level image compression. Comparing this algorithm with SPIHT algorithm, Huffman coding algorithm of SPIHT, JEPG 2000 and PCA compression algorithm, our experimental results demonstrate a better performance than other compression algorithms and can obtain higher PNSR and SSIM under the same compression ratio.
Keywords:PCA  SPIHT  Huffman  image compression  PNSR  SSIM
本文献已被 CNKI 等数据库收录!
点击此处可从《浙江大学学报(理学版)》浏览原始摘要信息
点击此处可从《浙江大学学报(理学版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号