Abstract: | Quadrupole and octupole deformation energy surfaces, low-energy excitation spectra, and electric transition rates in eight neutron-rich isotopic chains-Ra, Th, U, Pu, Cm, Cf, Fm, and No-are systematically analyzed using a quadrupole-octupole collective Hamiltonian model, with parameters determined by constrained reflection-asymmetric and axially-symmetric relativistic mean-field calculations based on the PC-PK1 energy density functional. The theoretical results of low-lying negative-parity bands, odd-even staggering, average octupole deformations <β3>, and B(E3; 31-→ 01+) show evidence of a shape transition from nearly spherical to stable octupole-deformed, and finally octupole-soft equilibrium shapes in the neutron-rich actinides. A microscopic mechanism for the onset of stable octupole deformation is also discussed in terms of the evolution of single-nucleon orbitals with deformation. |