Synthesis of bio‐based poly(N‐phenylitaconimide) by atom transfer radical polymerization |
| |
Authors: | Seiji Okada Krzysztof Matyjaszewski |
| |
Affiliation: | Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania |
| |
Abstract: | Poly(N‐phenylitaconimide) (polyPhII) was prepared using initiators for continuous activator regeneration atom transfer radical polymerization of PhII using FeBr3 complexes as catalysts. Conversion reached 69% in 24 h, yielding polyPhII with a number average molecular weight Mn = 11,900 and a molecular weight distribution Mw/Mn = 1.52. Copolymerizations of PhII with styrene at various molar ratios were performed providing a range of polyPhII‐copolySt polymers. When the copolymerization was carried out with higher [St]0 > [PhII]0 ratio, a one‐pot synthesis of poly(St‐alt‐PhII)‐b‐polySt was achieved. The thermal properties of the obtained copolymers were studied by differential scanning calorimetry. PolyPhII prepared by ATRP showed high glass transition temperature (Tg) of 216 °C and the poly(St‐alt‐PhII)‐b‐polySt exhibited two Tgs, at 162 and 104 °C, corresponding to a poly(St‐alt‐PhII) and polySt segments, respectively. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 822–827 |
| |
Keywords: | atom transfer radical polymerization (ATRP) bio‐based monomer controlled/living radical polymerization high glass transition temperature polymer N‐phenylitaconimide radical polymerization renewable resources |
|
|