首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Melt-crystallization, glass transition and morphology of a (R)-3-hydroxybutyrate pentamer
Authors:René Androsch
Institution:Martin-Luther-University Halle-Wittenberg, Center of Engineering Sciences, 06099 Halle/Saale, Germany
Abstract:The melt-crystallization of an oligo(R)-3-hydroxybutyrate] with five repeating units has been analyzed using standard and temperature-modulated calorimetry, optical microscopy, and atomic force microscopy. Specimens of different crystallinity and supermolecular structure were generated by variation of the rate of cooling of a quiescent melt, or by variation of the temperature of isothermal crystallization. Completely amorphous samples can be obtained by cooling of the melt at a rate of 40 K min−1, or faster, to a temperature lower than the glass transition. The crystallinity depends on the crystallization temperature. The maximum enthalpy-based crystallinity of about 40-45% is obtained by crystallization at temperatures lower than the temperature of the maximum crystallization rate, which is between 310 and 320 K. Analysis of the apparent heat capacity in metastable structural equilibrium reveals reversible melting at temperatures between 320 and 370 K by observation of an excess heat capacity above the level of the vibrational heat capacity, i.e., in the temperature range of irreversible reorganization and melting. The reversible melting is discussed in the context of coupling of the crystalline and amorphous phases, and compared to earlier studies on oligoethylene and oligo(oxyethylene). The presence of crystals causes formation of a rigid amorphous fraction of about 30% at a crystallinity of 40%. Optical and atomic force microscopy reveal spherulitic crystallization. At relatively high crystallization temperature, and in the early stage of the crystallization process, dendrites are observed which finally yield spherulites of decreased perfection. Larger spherulites of higher perfection grow at relatively low crystallization temperature, as deduced from the appearance of the Maltese cross, and the regularity of banding. The band spacing is less than 5 μm, as is accurately determined by atomic force microscopy. The temperature dependence of the spherulitic growth rate is in accord with the calorimetric analysis of the crystallization rate.
Keywords:Hydroxybutyrate pentamer  Irreversible and reversible crystallization and melting  Rigid amorphous fraction  Spherulite morphology
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号