首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Enhanced electrochemical evolution of oxygen by using nanoflowers made from a gold and iridium oxide composite
Authors:Chenxing Zhao  Yifeng E  Louzhen Fan
Institution:1. Department of Chemistry, Beijing Normal University, Beijing, China, 100875
Abstract:We report on the synthesis of a composite made from iridium oxide and gold that has a flower-like morphology. The ratio of iridium oxide to gold can be controlled by altering the concentrations of the metal precursors or the pH of the solution containing the reductant citrate. Scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and laser confocal micro-Raman spectroscopy were applied to characterize the structures of the nanoflowers, and a mechanism of their formation was deduced. The nanoflowers display an electrocatalytic activity in an oxygen evolution reaction (OER) that is significantly enhanced compared to bare iridium oxide nanoparticles. The highest turnover frequency for the OER of the new nanoflowers is 10.9?s?1, which is almost one order of magnitude better than that of the respective nanoparticles. These attractive features are attributed to the high oxidation states of iridium in the nanoflowers which is caused by the transfer of electronic charge from metal oxides to gold, and also to the flower fractal structure which is thought to provide a much more accessible surface than suspensions of the respective nanoparticle.
Figure
Gold and iridium oxide composites with nanoflower shapes have been successfully prepared. The nanoflowers display an electrocatalytic activity for the oxygen evolution reaction, which is significantly enhanced compared to bare iridium oxide nanoparticles.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号