首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Fluorescence Analysis in Microarray Technology
Authors:Stefan Nagl  Michael Schaeferling  Otto S Wolfbeis
Institution:(1) Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, D-93040 Regensburg, Germany
Abstract:Fluorescence has been the preferred choice for data quantification in biomedical microarray formats since their earliest days. As much as the formats have grown and evolved over the years, the methods in optical analysis have become ever more sophisticated and complex in order to produce more and better output. This review will provide an insight into the most common methods and the state-of-the-art of all areas in microarray fluorescence analysis. Starting with an overview on microarray formats with a focus on their demands on the readout, the most common and useful organic fluorescent stains are discussed before proceeding on to other approaches; the use of semiconductor nanocrystals (quantum dots), polymer and silica nanoparticles and fluorescent proteins. Ways to enhance the intrinsically low signal on biochips have become increasingly important as they offer a sound approach towards the detection of low concentration sample content. The three main categories are presented: amplification using DNA, enzymes, and dendrimers. As much diversity as on the microarrays themselves can be found at the detection device. Standard optical microarray detectors, and non-standard methods using fluorescence anisotropy, fluorescence lifetime imaging (FLIM) and fluorescence resonance energy transfer (FRET), and their advantages and disadvantages are discussed.
Keywords:: Microarray technology  fluorescence analysis  signal amplification  optical methods  fluorescence lifetime imaging  
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号