首页 | 本学科首页   官方微博 | 高级检索  
     检索      


On the use of AES data analysis to determine local enrichments of conversion coating elements at intermetallic particles on rolled Al
Authors:Pieter Bouckenooge  Oliver Bauer  Kathrin Eckhard  Herman Terryn
Institution:1. Research Group Electrochemical and Surface Engineering (SURF), Vrije Universiteit Brussel, Brussels, Belgium;2. Research and Development, R&D, Hydro Aluminium Rolled Products GmbH, Bonn, Germany
Abstract:In this paper, the behaviour of the industrial applied Ti/Zr conversion coating (CC) pretreatment on rolled automotive aluminium samples (AA5182) is analysed. Due to its nanometre lateral and depth resolution, Auger electron spectroscopy (AES) is used to analyse the CC distribution at surface cathodic intermetallic particles. As a result of its high surface sensitivity, the AES technique is very susceptible to differences in the top contamination layer thickness. It is demonstrated that AES point measurements performed on aluminium model samples coated with 1.5 and 3 nm of Ti (oxide) layer cannot differentiate the two-layer thicknesses if a difference in the top contamination thickness is not taken into account. A data analysis methodology is introduced, based on the ratio of normalized peak areas (enrichment ratios), to eliminate the effect of the contamination layer thickness. The experimental validation of the methodology is performed on the model samples, demonstrating errors of 2% on the enrichment ratios on similar samples with different contamination layer thicknesses, while the conventional spectra quantification results in errors of 49%. The methodology is also theoretically substantiated within certain constraints. By the use of the AES methodology, an enriched Ti and Zr deposition is confirmed at the cathodic intermetallic particles at the surface of the industrial no-rinse CC sprayed automotive aluminium sheet samples.
Keywords:Auger electron spectroscopy  automotive  conversion coating  data treatment  thin coatings
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号