首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Mechanism of white phosphorus activation by three-coordinate molybdenum(III) complexes: a thermochemical, kinetic, and quantum chemical investigation
Authors:Stephens Frances H  Johnson Marc J A  Cummins Christopher C  Kryatova Olga P  Kryatov Sergey V  Rybak-Akimova Elena V  McDonough J Eric  Hoff Carl D
Institution:Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
Abstract:White phosphorus (P(4)) reacts with three-coordinate molybdenum(III) trisamides or molybdaziridine hydride complexes to produce either bridging or terminal phosphide (P(3)(-)) species, depending upon the ancillary ligand steric demands. Thermochemical measurements have been made that place the MoP triple bond dissociation enthalpy at 92.2 kcal.mol(-)(1). Thermochemical measurements together with computational analysis rule out simple P-atom abstraction from P(4) as a step in the phosphorus activation mechanism. Kinetic measurements made by the stopped-flow method show that the reaction between the monomeric molybdenum complexes and P(4) is first-order both in metal complex and in P(4). Cyclo-P(3) complexes can be obtained when ancillary ligand steric demands are small, but kinetic measurements rule them out as monometallic intermediates in the P(4) activation mechanism. Also studied by calorimetric, kinetic, and in one case variable-temperature NMR methods is the process of mu-phosphide bridge formation. Post-rate-determining steps of the P(4) activation process were examined in a search for minima on the reaction's potential energy surface, leading to the proposal of two plausible, parallel, bimetallic reaction channels.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号