首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Carbon-carbon reductive elimination from homoleptic uranium(IV) alkyls induced by redox-active ligands
Authors:Kraft Steven J  Fanwick Phillip E  Bart Suzanne C
Institution:H.C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, USA.
Abstract:The synthesis, characterization, and reactivity of the homoleptic uranium(IV) alkyls U(CH(2)C(6)H(5))(4) (1-Ph), U(CH(2)-p-CH(3)C(6)H(4))(4) (1-p-Me), and U(CH(2)-m-(CH(3))(2)C(6)H(3))(4) (1-m-Me(2)) are reported. The addition of 4 equiv of K(CH(2)Ar) (Ar = Ph, p-CH(3)C(6)H(4), m-(CH(3))(2)C(6)H(3)) to UCl(4) at -108 °C produces 1-Ph in good yields and 1-p-Me and 1-m-Me(2) in moderate yields. Further characterization of 1-Ph by X-ray crystallography confirmed η(4)-coordination of each benzyl ligand to the uranium center. Magnetic studies produced an effective magnetic moment of 2.60 μ(B) at 23 °C, which is consistent with a tetravalent uranium 5f(2) electronic configuration. Addition of 1 equiv of the redox-active α-diimine (Mes)DAB(Me) ((Mes)DAB(Me) = ArN═C(Me)C(Me)═NAr]; Ar = 2,4,6-trimethylphenyl (Mes)) to 1-Ph results in reductive elimination of 1 equiv of bibenzyl (PhCH(2)CH(2)Ph), affording ((Mes)DAB(Me))U(CH(2)C(6)H(5))(2) (2-Ph). Treating an equimolar mixture of 1-Ph and 1-Ph-d(28) with (Mes)DAB(Me) forms the products from monomolecular reductive elimination, 2-Ph, 2-Ph-d(14), bibenzyl, and bibenzyl-d(14). This is confirmed by (1)H NMR spectroscopy and GC/MS analysis of both organometallic and organic products. Addition of 1 equiv of 1,2-bis(dimethylphosphino)ethane (dmpe) to 1-Ph results in formation of the previously synthesized (dmpe)U(CH(2)C(6)H(5))(4) (3-Ph), indicating the redox-innocent chelating phosphine stabilizes the uranium center in 3-Ph and prevents reductive elimination of bibenzyl. Full characterization for 3-Ph, including X-ray crystallography, is reported.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号