首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Ti-doped LiAlH4 for hydrogen storage: synthesis, catalyst loading and cycling performance
Authors:Liu Xiangfeng  Langmi Henrietta W  Beattie Shane D  Azenwi Felix F  McGrady G Sean  Jensen Craig M
Institution:Department of Chemistry, University of New Brunswick, P.O. Box 4400, Fredericton, New Brunswick E3B 5A3, Canada.
Abstract:The direct synthesis of LiAlH(4) from commercially available LiH and Al powders in the presence of TiCl(3) and Me(2)O has been achieved for the first time. The effects of TiCl(3) loadings (Ti/Al = 0, 0.01, 0.05, 0.2, 0.5, 1.0 and 2.0%) and various other additives (TiCl(3)/Al(2)O(3), metallic Ti, Nb(2)O(5), and NbCl(5)) on the formation and stability of LiAlH(4) have been systematically investigated. The yield of LiAlH(4) initially increases, and then decreases, with increasing TiCl(3) loadings. LiH + Al → LiAlH(4) yields above 95% were obtained when the molar ratios of Ti/Al were 0.05 and 0.2%. In the presence of a very tiny amount of TiCl(3) (Ti/Al = 0.01%), LiAlH(4) is still generated, but the yield is lower. In the complete absence of TiCl(3), LiAlH(4) does not form. Addition of metallic Ti, Nb(2)O(5), and NbCl(5) to commercial LiH and Al does not result in the formation of LiAlH(4). Preliminary tests show that TiCl(3)-doped LiAlH(4) can be cycled, making it a suitable candidate for hydrogen storage.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号