首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Aristolochene synthase: mechanistic analysis of active site residues by site-directed mutagenesis
Authors:Felicetti Brunella  Cane David E
Institution:Department of Chemistry, Box H, Brown University, Providence, Rhode Island 02912-9108, USA.
Abstract:Incubation of farnesyl diphosphate (1) with Penicillium roqueforti aristolochene synthase yielded (+)-aristolochene (4), accompanied by minor quantities of the proposed intermediate (S)-(-)germacrene A (2) and the side-product (-)-valencene (5) in a 94:4:2 ratio. By contrast, the closely related aristolochene synthase from Aspergillus terreus cyclized farnesyl diphosphate only to (+)-aristolochene (4). Site-directed mutagenesis of amino acid residues in two highly conserved Mg(2+)-binding domains led in most cases to reductions in both k(cat) and k(cat)/K(m) as well as increases in the proportion of (S)-(-)germacrene A (2), with the E252Q mutant of the P. roqueforti aristolochene synthase producing only (-)-2. The P. roqueforti D115N, N244L, and S248A/E252D mutants were inactive, as was the A. terreus mutant E227Q. The P. roqueforti mutant Y92F displayed a 100-fold reduction in k(cat) that was offset by a 50-fold decrease in K(m), resulting in a relatively minor 2-fold decrease in catalytic efficiency, k(cat)/K(m). The finding that Y92F produced (+)-aristolochene (4) as 81% of the product, accompanied by 7% 5 and 12% 2, rules out Tyr-92 as the active site Lewis acid that is responsible for protonation of the germacrene A intermediate in the formation of aristolochene (4).
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号