首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Nanoscale mixing of soft solids
Authors:Choi Soo-Hyung  Lee Sangwoo  Soto Haidy E  Lodge Timothy P  Bates Frank S
Institution:Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States.
Abstract:Assessing the state of mixing on the molecular scale in soft solids is challenging. Concentrated solutions of micelles formed by self-assembly of polystyrene-block-poly(ethylene-alt-propylene) (PS-PEP) diblock copolymers in squalane (C(30)H(62)) adopt a body-centered cubic (bcc) lattice, with glassy PS cores. Utilizing small-angle neutron scattering (SANS) and isotopic labeling ((1)H and (2)H (D) polystyrene blocks) in a contrast-matching solvent (a mixture of squalane and perdeuterated squalane), we demonstrate quantitatively the remarkable fact that a commercial mixer can create completely random mixtures of micelles with either normal, PS(H), or deuterium-labeled, PS(D), cores on a well-defined bcc lattice. The resulting SANS intensity is quantitatively modeled by the form factor of a single spherical core. These results demonstrate both the possibility of achieving complete nanoscale mixing in a soft solid and the use of SANS to quantify the randomness.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号