首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Dynamics of energy transfer in peptide-surface collisions
Authors:Meroueh Oussama  Hase William L
Institution:Contribution from the Department of Chemistry, Wayne State University, Detroit, Michigan 48202-3489.
Abstract:Classical trajectory simulations are performed to study energy transfer in collisions of protonated triglycine (Gly)(3) and pentaglycine (Gly)(5) ions with n-hexyl thiolate self-assembled monolayer (SAM) and diamond 111] surfaces, for a collision energy E(i) in the range of 10-110 eV and a collision angle of 45 degrees. Energy transfer to the peptide ions' internal degrees of freedom is more efficient for collision with the diamond surface; i.e., 20% transfer to peptide vibration/rotation at E(i) = 30 eV. For collision with diamond, the majority of E(i) remains in peptide translation, while the majority of the energy transfer is to surface vibrations for collision with the softer SAM surface. The energy-transfer efficiencies are very similar for (Gly)(3) and (Gly)(5). Constraining various modes of (Gly)(3) shows that the peptide torsional modes absorb approximately 80% of the energy transfer to the peptide's internal modes. The energy-transfer efficiencies depend on E(i). These simulations are compared with recent experiments of peptide SID and simulations of energy transfer in Cr(CO)(6)(+) collisions with the SAM and diamond surfaces.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号