首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Preparations, structures, and electrochemical studies of aryldiazene complexes of rhenium: syntheses of the first heterobinuclear and heterotrinuclear derivatives with bis(diazene) or bis(diazenido) bridging ligands
Authors:Albertin G  Antoniutti S  Bacchi A  Ballico G B  Bordignon E  Pelizzi G  Ranieri M  Ugo P
Institution:Dipartimento di Chimica, Università Ca'Foscari di Venezia, Dorsoduro 2137, 30123 Venezia, Italy.
Abstract:The mono- and binuclear aryldiazene complexes Re(C6H5N=NH)(CO)5-nPn]BY4 (1-5) and (Re(CO)5-nPn)2-(mu-HN=NAr-ArN=NH)](BY4)2 (6-12) P = P(OEt)3, PPh(OEt)2, PPh2OEt; n = 1-4; Ar-Ar = 4,4'-C6H4-C6H4, 4,4'-(2-CH3)C6H3-C6H3(2-CH3), 4,4'-C6H4-CH2-C6H4; Y = F, Ph) were prepared by reacting the hydride species ReH(CO)5-nPn with the appropriate mono- and bis(aryldiazonium) cations. These compounds, as well as other prepared compounds, were characterized spectroscopically (IR; 1H, 31P, 13C, and 15N NMR data), and 1a was also characterized by an X-ray crystal structure determination. Re(C6H5N=NH)(CO)(P(OEt)3)4]BPh4 (1a) crystallizes in space group P1 with a = 15.380(5) A, b = 13.037(5) A, c = 16.649(5) A, alpha = 90.33(5) degrees, beta = 91.2(1) degrees, gamma = 89.71(9) degrees, and Z = 2. The "diazene-diazonium" complexes M(CO)3P2(HN=NAr-ArN identical to N)](BF4)2 (13-15, 17) M = Re, Mn; P = PPh2OEt, PPh2OMe, PPh3; Ar-Ar = 4,4'-C6H4-C6H4, 4,4'-C6H4-CH2-C6H4] and Re(CO)4(PPh2OEt)(4,4'-HN=NC6H4-C6H4N identical to N)](BF4)2 (16b) were synthesized by allowing the hydrides MH(CO)3P2 or ReH(CO)4P to react with equimolar amounts of bis(aryldiazonium) cations under appropriate conditions. Reactions of diazene-diazonium complexes 13-17 with the metal hydrides M2H2P'4 and M2'H(CO)5-nP"n afforded the heterobinuclear bis(aryldiazene) derivatives M1(CO)3P2(mu-HN=NAr-ArN=NH)M2HP'4](BPh4)2 (ReFe, ReRu, ReOs, MnRu, MnOs) and M1(CO)3P2(mu-HN=NAr-ArN=NH)M2'(CO)5-nP"n](BPh4)2 (ReMn, MnRe) M1 = Re, Mn; M2 = Fe, Ru, Os; M2' = Mn, Re; P = PPh2OEt, PPh2OMe; P',P" = P(OEt)3, PPh(OEt)2; Ar-Ar = 4,4'-C6H4-C6H4, 4,4'-C6H4-CH2-C6H4; n = 1, 2]. The heterotrinuclear complexes Re(CO)3(PPh2OEt)2(mu-4,4'-HN=NC6H4-C6H4N=NH)M(P(OEt)3)4(mu-4,4'-HN=NC6H4- C6H4N=NH)Mn(CO)3(PPh2OEt)2](BPh4)4 (M = Ru, Os) (ReRuMn, ReOsMn) were obtained by reacting the heterobinuclear complexes ReRu and ReOs with the appropriate diazene-diazonium cations. The heterobinuclear complex with a bis(aryldiazenido) bridging ligand Mn(CO)2(PPh2OEt)2(mu-4,4'-N2C6H4-C6H4N2)Fe(P(OEt)3)4]BPh4 (MnFe) was prepared by deprotonating the bis(aryldiazene) compound Mn(CO)3(PPh2OEt)2(mu-4,4'-HN=NC6H4-C6H4N=NH)Fe(4- CH3C6H4CN)(P(OEt)3)4](BPh4)3. Finally, the binuclear compound Re(CO)3(PPh2OEt)2(mu-4,4'-HN=NC6H4-C6H4N2)Fe(CO)2(P(OPh)3)2](BPh4)2 (ReFe) containing a diazene-diazenido bridging ligand was prepared by reacting Re(CO)3(PPh2OEt)2(4,4'-HN=NC6H4-C6H4N identical to N)]+ with the FeH2(CO)2(P(OPh)3)2 hydride derivative. The electrochemical reduction of mono- and binuclear aryldiazene complexes of both rhenium (1-12) and the manganese, as well as heterobinuclear ReRu and MnRu complexes, was studied by means of cyclic voltammetry and digital simulation techniques. The electrochemical oxidation of the mono- and binuclear aryldiazenido compounds Mn(C6H5N2)(CO)2P2 and (Mn(CO)2P2)2(mu-4,4'-N2C6H4-C6H4N2) (P = PPh2OEt) was also examined. Electrochemical data show that, for binuclear compounds, the diazene bridging unit allows delocalization of electrons between the two different redox centers of the same molecule, whereas the two metal centers behave independently in the presence of the diazenido bridging unit.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号