首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Phosphate diester hydrolysis and DNA damage promoted by new cis-aqua/hydroxy copper(II) complexes containing tridentate imidazole-rich ligands
Authors:Scarpellini Marciela  Neves Ademir  Hörner Rosmari  Bortoluzzi Adailton J  Szpoganics Bruno  Zucco César  Nome Silva René A  Drago Valderes  Mangrich Antônio S  Ortiz Wilson A  Passos Wagner A C  de Oliveira Maurício C B  Terenzi Hernán
Institution:Laboratório de Bioinorganica e Cristalografia, Departamento de Química, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, SC, Brazil.
Abstract:The tridentate Schiff base (2-(imidazol-4-yl)ethyl)(1-methylimidazol-2-yl)methyl)imine (HISMIMI) and its reduced form HISMIMA were synthesized and characterized, as well their mononuclear cis-dihalo copper(II) complexes 1 and 2, respectively. In addition, the dinuclear CuII(mu-OH)2CuII](2+) complexes (3) and (4) obtained from complexes 1 and 2, respectively, were also isolated and characterized by several physicochemical techniques, including magnetochemistry, electrochemistry, and EPR and UV-vis spectroscopies. The crystal structures of 1 and 2 were determined by X-ray crystallography and revealed two neutral complexes with their tridentate chelate ligands meridionally coordinated. Completing the coordination spheres of the square-pyramidal structures, a chloride ion occupies the apical position and another is bonded in the basal plane. In addition, complexes 1 and 2 were investigated by infrared, electronic, and EPR spectroscopies, cyclic voltammetry, and potentiometric equilibrium studies. The hydrolytic activity on phosphate diester cleavage of 1 and 2 was investigated utilizing 2,4-BDNPP as substrate. These experiments were carried out at 50 degrees C, and the data treatment was based on the Michaelis-Menten approach, giving the following kinetic parameters (complex 1/complex 2): vmax (mol L(-1) s(-1))=16.4x10(-9)/7.02x10(-9); KM (mol L(-1))=17.3x10(-3)/3.03x10(-3); kcat (s(-1))=3.28x10(-4)/1.40x10(-4). Complex 1 effectively promoted the hydrolytic cleavage of double-strand plasmid DNA under anaerobic and aerobic conditions, with a rate constant of 0.28 h(-1) for the decrease of form I, which represents about a 10(7) rate increase compared with the estimated uncatalyzed rate of hydrolysis.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号