首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The Formation of Luminescent Supramolecular Ternary Complexes in Water: Delayed Luminescence Sensing of Aromatic Carboxylates Using Coordinated Unsaturated Cationic Heptadentate Lanthanide Ion Complexes
Authors:Thorfinnur Gunnlaugsson  Andrew J Harte  Joseph P Leonard  Mark Nieuwenhuyzen
Institution:1. Department of Chemistry , Trinity College Dublin, 2, Dublin, Ireland gunnlaut@tcd.ie;3. Department of Chemistry , Trinity College Dublin, 2, Dublin, Ireland;4. School of Chemistry , Queen's University of Belfast , BTAG, 9 5, Belfast, UK
Abstract:The synthesis of four lanthanide ion complexes Eu?1, Eu?2, Tb?1 and Tb?2, from the heptadentate tri-arm cyclen (1,4,7,10-tetraazacyclododecane) ligands 1 and 2 that were made in one-pot syntheses is described. These coordinatively unsaturated complexes have two labile metal-bound water molecules, as demonstrated by X-ray crystallography. This was also confirmed by evaluating their hydration state (q~2) by measuring their lifetimes in D2O and H2O, respectively. The above complexes were all designed as being “photophysically silent” prior to the recognition of the anion, since they do not possess antenna that can participate in sensitisation of the Eu(III) or the Tb(III) excited state. However, the two water molecules can be displaced upon anion binding by the appropriate aromatic carboxylates to give ternary complexes in water, through either four- or six-member ring chelates (q~0), or possibly via a monodentate binding. In the case of Tb?1 and Tb?2, large luminescence enhancements were observed upon the formation of such ternary complexes with N,N-dimethylaminobenzoic acid at ambient pH. Such binding and luminescent enhancements were also observed for Tb?1 in the presence of salicylic acid. On all occasions, the anion recognition “switched” the emission “on” over two logarithmic units. At higher concentrations, the emission is reduced possibly due to quenching. In the case of aspirin, the binding was too weak to be measured, indicating that Tb?1 selectively detects salicylic acid, the active form of aspirin in water. In the case of Eu?1 and Eu?2, the affinity of these complexes towards such aromatic carboxylates was too weak for efficient ternary complex formation.
Keywords:Lanthanide luminescence  Lanthanide complexes  Sensing  Aspirin  Salicylic acid
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号