首页 | 本学科首页   官方微博 | 高级检索  
     检索      

利用掺杂诱导的金属-N活性位点和带隙调控提升石墨相氮化碳的光催化产氢性能
引用本文:于晓慧,苏海伟,邹建平,刘芹芹,王乐乐,唐华.利用掺杂诱导的金属-N活性位点和带隙调控提升石墨相氮化碳的光催化产氢性能[J].催化学报,2022(2):421-432.
作者姓名:于晓慧  苏海伟  邹建平  刘芹芹  王乐乐  唐华
作者单位:江苏大学先进制造与现代装备技术工程研究院, 江苏镇江212013;江苏大学材料科学与工程学院, 江苏镇江212013;江西省持久性污染物控制与资源循环利用重点实验室, 江西南昌330063;江苏大学材料科学与工程学院, 江苏镇江212013;青岛大学环境科学与工程学院, 山东青岛266071
基金项目:国家自然科学基金(21975110,21972058).
摘    要:由于石墨相氮化碳(g-C3N4)的独特结构和性质,特别是其具有合适的能带结构位置及可调控的晶体结构,被广泛应用于光催化产氢反应中.然而,纯相氮化碳具有较快的光生电荷复合速率,这使其光催化产氢活性较低.目前,利用非金属或过渡金属原子掺杂可有效提升电荷分离速度,从而提高光催化产氢活性.相比于非金属掺杂,g-C3N4的三嗪环...

关 键 词:石墨相氮化碳  光催化产氢  金属-N活性位点  过渡金属掺杂  带隙调控

Doping-induced metal-N active sites and bandgap engineering in graphitic carbon nitride for enhancing photocatalytic H2 evolution performance
Xiaohui Yu,Haiwei Su,Jianping Zou,Qinqin Liu,Lele Wang,Hua Tang.Doping-induced metal-N active sites and bandgap engineering in graphitic carbon nitride for enhancing photocatalytic H2 evolution performance[J].Chinese Journal of Catalysis,2022(2):421-432.
Authors:Xiaohui Yu  Haiwei Su  Jianping Zou  Qinqin Liu  Lele Wang  Hua Tang
Institution:(Engineering Institute of Advanced Manufacturing and Modern Equipment Technology,Jiangsu University,Zhenjiang 212013,Jiangsu,China;Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle,Nanchang Hangkong University,Nanchang 330063,Jiangxi,China;School of Materials Science and Engineering,Jiangsu University,Zhenjiang 212013,Jiangsu,China;School of Environmental Science and Engineering,Qingdao University,Qingdao 266071,Shandong,China)
Abstract:Durable and inexpensive graphitic carbon nitride (g-C3N4) demonstrates great potential for achiev-ing efficient photocatalytic hydrogen evolution reduction (HER). To further improve its activity, g-C3N4 was subjected to atomic-level structural engineering by doping with transition metals (M = Fe, Co, or Ni), which simultaneously induced the formation of metal-N active sites in the g-C3N4 framework and modulated the bandgap of g-C3N4. Experiments and density functional theory calcu-lations further verified that the as-formed metal-N bonds in M-doped g-C3N4 acted as an "electron transfer bridge", where the migration of photo-generated electrons along the bridge enhanced the efficiency of separation of the photogenerated charges, and the optimized bandgap of g-C3N4 af-forded stronger reduction ability and wider light absorption. As a result, doping with either Fe, Co, or Ni had a positive effect on the HER activity, where Co-doped g-C3N4 exhibited the highest perfor-mance. The findings illustrate that this atomic-level structural engineering could efficiently improve the HER activity and inspire the design of powerful photocatalysts.
Keywords:g-C3N4  Photocatalytic H2 generation  Metal-N active sites  Transition metal doping  Band gap engineering
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号