首页 | 本学科首页   官方微博 | 高级检索  
     检索      

H-ZSM-5分子筛不同孔道处的酸位在甲醇制烯烃反应中的催化作用
引用本文:王森,李志凯,秦张峰,董梅,李俊汾,樊卫斌,王建国.H-ZSM-5分子筛不同孔道处的酸位在甲醇制烯烃反应中的催化作用[J].催化学报,2021,42(7):1126-1136,中插21-中插24.
作者姓名:王森  李志凯  秦张峰  董梅  李俊汾  樊卫斌  王建国
作者单位:中国科学院山西煤炭化学研究所, 煤转化国家重点实验室, 山西太原030001;中国科学院山西煤炭化学研究所, 煤转化国家重点实验室, 山西太原030001;中国科学院大学, 北京100049
基金项目:This work was supported by the National Key R&D Program of China ;山西省优秀博士生;the Natural Science Foundation of Shanxi Province of China ;山西省自然科学基金;煤转化国家重点实验室自主研究项目; 国家重点研发计划;and the Independent Research Project of State Key Laboratory of Coal Con-version, Institute of Coal Chemistry, CAS ;国家自然科学基金;the National Natural Science Foundation of China ;Excellent Doctoral Student Award and Subsidy Program of Shanxi Province
摘    要:甲醇制烯烃(MTO)作为一条由煤、天然气和生物质等含碳资源制备重要有机化学品的非石油路线,近年来备受关注.作为MTO催化剂,分子筛的骨架拓扑结构和酸性质对于其催化活性、反应路径和产物分布等具有重要的影响.H-ZSM-5分子筛是一种典型的MTO反应催化剂,酸位可以分布在MFI拓扑结构的直孔道、正弦孔道和交叉位点处.虽然目前已普遍认可MTO反应遵循芳烃/烯烃双循环烃池机理,分子筛的催化性能与其骨架中酸中心的位置相关,但对于H-ZSM-5分子筛不同孔道位置处的酸中心在甲醇制烯烃反应中的催化作用仍缺乏足够认识.本文采用密度泛函理论计算和分子动力学模拟方法,对H-ZSM-5分子筛不同孔道处(包括正弦孔道、直孔道和交叉腔)酸位中心上的MTO反应网络(包括芳烃循环、烯烃循环和芳构化)及甲醇原料和烯烃/芳烃产物的扩散行为进行了比较研究.结果表明,与正弦孔道和直孔道相比,芳烃循环和芳构化反应在交叉腔的酸中心上因具有较低的能垒而更易进行.相比之下,在正弦孔道和直孔道中,多甲基苯的生成受到显著限制,而烯烃循环却可以在三种酸中心(正弦孔道、直孔道和交叉腔)上以相近的能垒和相似的几率进行.芳烃循环生成乙烯和丙烯的几率相近,而烯烃循坏产物以丙烯和较高的烯烃产物为主.落位于H-ZSM-5交叉腔的酸中心能促进芳烃中间体如多甲基苯的生成,推动芳烃循环,提高乙烯选择性,而正弦孔道和直孔道中的酸中心则能增强烯烃循环,生成较多的丙烯和较高的烯烃产物.因此,H-ZSM-5分子筛对MTO的催化性能(包括活性和产物选择性等),可以通过有目的地调节酸中心在分子筛骨架中的位置分布(即铝落位)而得到有效调变和提升.本文阐明了H-ZSM-5分子筛酸中心在MTO反应中的催化作用与其骨架中的落位之间的有机联系,为高效甲醇转化分子筛催化剂的设计和性能提升提供了参考思路.

关 键 词:甲醇制烯烃  H-ZSM-5分子筛  酸位分布  密度泛函理论计算  分子动力学模拟

Catalytic roles of the acid sites in different pore channels of H-ZSM-5 zeolite for methanol-to-olefins conversion
Sen Wang,Zhikai Li,Zhangfeng Qin,Mei Dong,Junfen Li,Weibin Fan,Jianguo Wang.Catalytic roles of the acid sites in different pore channels of H-ZSM-5 zeolite for methanol-to-olefins conversion[J].Chinese Journal of Catalysis,2021,42(7):1126-1136,中插21-中插24.
Authors:Sen Wang  Zhikai Li  Zhangfeng Qin  Mei Dong  Junfen Li  Weibin Fan  Jianguo Wang
Institution:(State Key Laboratory of Coal Conversion,Institute of Coal Chemistry,Chinese Academy of Sciences,Taiyuan 030001,Shanxi,China;University of the Chinese Academy of Sciences,Beijing 100049,China)
Abstract:H-ZSM-5 zeolite is a typical catalyst for methanol-to-olefins (MTO) conversion. Although the per-formance of zeolite catalysts for MTO conversion is related to the actual location of acid sites in the zeolite framework, the catalytic roles of the acid sites in different pore channels of the H-ZSM-5 zeolite are not well understood. In this study, the MTO reaction network, involving the aromatic cycle, alkene cycle, and aromatization process, and also the diffusion behavior of methanol feed-stock and olefin and aromatic products at different acid sites in the straight channel, sinusoidal channel, and intersection cavity of H-ZSM-5 zeolite was comparatively investigated using density functional theory calculations and molecular dynamic simulations. The results indicated that the aromatic cycle and aromatization process occurred preferentially at the acid sites in the intersection cavities with a much lower energy barrier than that at the acid sites in the straight and sinusoidal channels. In contrast, the formation of polymethylbenzenes was significantly suppressed at the acid sites in the sinusoidal and straight channels, whereas the alkene cycle can occur at all three types of acid sites with similar energy barriers and probabilities. Consequently, the catalytic performance of H-ZSM-5 zeolite for MTO conversion, including activity and product selectivity, can be regulated properly through the purposive alteration of the acid site distribution, viz., the location of Al in the zeolite framework. This study helps to elucidate the relation between the catalytic performance of different acid sites in the H-ZSM-5 zeolite framework for MTO conversion, which should greatly benefit the design of efficient catalyst for methanol conversion.
Keywords:Methanol-to-olefins  H-ZSM-5 zeolite  Acid site distribution  Density functional theory calculation  Molecular dynamic simulation
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号