首页 | 本学科首页   官方微博 | 高级检索  
     检索      

水分子在均三嗪基g-C3N4上的吸附
引用本文:朱必成,张留洋,程蓓,于岩,余家国.水分子在均三嗪基g-C3N4上的吸附[J].催化学报,2021,42(1):115-122,后插10.
作者姓名:朱必成  张留洋  程蓓  于岩  余家国
作者单位:武汉理工大学材料复合新技术国家重点实验室, 湖北武汉430070;福州大学材料科学与工程学院, 生态环境材料先进技术重点实验室, 福建福州350116;武汉理工大学材料复合新技术国家重点实验室, 湖北武汉430070;郑州大学材料科学与工程学院, 河南郑州450001
基金项目:and the Fundamental Research Funds for the Central Universities;中央高校基本科研业务费专项资金资助;Innovative Research Funds of SKLWUT;This work was supported by the National Key Research and Development Program of China;the National Natural Science Foun-dation of China;国家自然科学基金;武汉理工大学自主创新研究基金; 国家重点研发计划;博士后创新人才支持计划;National Postdoctoral Program for Innovative Talents
摘    要:气体分子与光催化剂之间的相互作用对于光催化反应的触发非常重要.对于TiO2,ZnO和WO3等传统金属氧化物光催化剂上的水分解反应而言,已有许多报道研究了水分子在它们表面的吸附行为.结果表明,水分子与催化剂表面的原子形成了O-H…O氢键.石墨相氮化碳(g-C3N4)是一种具有可见光响应且化学性质稳定的光催化剂,对其进行修饰以增强其分解水产氢性能的研究非常多.本文通过密度泛函理论计算,全面研究了水分子在均三嗪(s-triazine)基g-C3N4上的吸附情况.首先构建了一系列初始吸附模型,考察了各种吸附位和水分子的朝向.通过比较分析计算得到的吸附能,确定了一种最优的吸附构型,即水分子以竖直的朝向吸附于褶皱的单层g-C3N4表面.水分子中的一个极性O-H键与g-C3N4中一个二配位富电子的氮原子结合形成了分子间的O-H…N氢键.其中,H原子与N原子的间距为1.92?,O-H键的键长由0.976?增至0.994?.进一步通过计算Mulliken电荷,态密度和静电势曲线分析了该吸附体系的电子性质.结果发现在分子间氢键的桥接作用下,g-C3N4上的电子转移至水分子,由此导致g-C3N4的费米能级降低,功函数由4.21 eV增至5.30 eV.在该吸附模型的基础上,考查了不同的吸附距离.当水分子与g-C3N4的间距设为1至4?时,几何优化后总是能得到相同的吸附构型,吸附能和氢键长度也十分相近.随后,通过改变吸附基底g-C3N4的大小和形状,验证了这种吸附构型具有很强的重复性.将2′2单层g-C3N4吸附基底替换为2′2多层g-C3N4(2至5层),3′3和4′4单层g-C3N4,以及具有不同管径的单壁g-C3N4纳米管后,水分子的吸附能随着体系原子数的增多而增大,但吸附模型的几何结构和电子性质基本不变,包括O-H…N氢键的形成和键长,以及电子转移和增大的功函数.另外还研究了非金属元素(P,O,S,Se,F,Cl和Br)掺杂对吸附能的影响.构建模型时,杂质原子以取代二配位氮原子的方式进行掺杂,水分子放置于杂质原子上方.结果显示,引入杂质原子后水分子的吸附能增大,在理论上从吸附的角度解释了元素掺杂增强g-C3N4分解水活性.总之,本文揭示了一种在分子间氢键的作用下,具有高取向性的水分子吸附的g-C3N4构型,这有助于g-C3N4基光催化剂上水分解过程的理解和优化设计.

关 键 词:g-C3N4  H2O  密度泛函理论  氢键  吸附能

H2O molecule adsorption on s-triazine-based g-C3N4
Bicheng Zhu,Liuyang Zhang,Bei Cheng,Yan Yu,Jiaguo Yu.H2O molecule adsorption on s-triazine-based g-C3N4[J].Chinese Journal of Catalysis,2021,42(1):115-122,后插10.
Authors:Bicheng Zhu  Liuyang Zhang  Bei Cheng  Yan Yu  Jiaguo Yu
Institution:(State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,Hubei,China;Key Laboratory of Eco-materials Advanced Technology,College of Materials Science and Engineering,Fuzhou University,Fuzhou 350116,Fujian,China;School of Materials Science and Engineering,Zhengzhou University,Zhengzhou 450001,Henan,China)
Abstract:The interaction between a gas molecule and photocatalyst is vital to trigger photocatalytic reaction. The surface state of photocatalyst affects much in this interaction. Herein, adsorption of H2O mole-cules on s-triazine-based g-C3N4 was thoroughly studied by first-principle calculation. Although various initial adsorption models with multifarious locations of H2O molecules were built, the opti-mized models with strong adsorption energy pointed to the same adsorption configuration, in which the H2O molecule hold an upright orientation above the corrugated g-C3N4 monolayer. An intermolecular O–H…N hydrogen bond formed via the binding of a polar O–H bond in H2O molecule and a two-coordinated electron-rich nitrogen atom in g-C3N4. Under the bridging effect of this in-termolecular hydrogen bond, electrons would transfer from g-C3N4 to the H2O molecule, thereby lowering the Fermi level and enlarging work function of g-C3N4. Interestingly, regardless of the substitute, i.e. g-C3N4 multilayer, large supercell and nanotube, this adsorption system was highly reproducible, as its geometry structure and electronic property remained unchanged. In addition, the effect of nonmetal element doping on adsorption energy was explored. This work not only dis-closed a highly preferential H2O adsorbed g-C3N4 architecture established by intermolecular hydro-gen bond, but also contributed to the deep understanding and optimized design in water-splitting process on g-C3N4-based photocatalysts.
Keywords:g-C3N4  H2O  Density functional theory  Hydrogen bond  Adsorption energy
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号