首页 | 本学科首页   官方微博 | 高级检索  
     检索      

可控碳改性Pd/TiO2用于直接合成双氧水:非均相界面对催化性能的影响(英文)
引用本文:严伟,孙睿,李蒙,李力成,杨祝红,花泽林,陆小华,刘畅.可控碳改性Pd/TiO2用于直接合成双氧水:非均相界面对催化性能的影响(英文)[J].催化学报,2020(2):312-321.
作者姓名:严伟  孙睿  李蒙  李力成  杨祝红  花泽林  陆小华  刘畅
作者单位:南京工业大学化学工程学院;南京林业大学化学工程学院
基金项目:supported by the National Natural Science Foundation of China(21878143,21476106,21838004);Joint Re-search Fund for Overseas Chinese Scholars and Scholars in Hong Kong and Macao Young Scholars(21729601);the fund of State Key Laboratory of Materials-Oriented Chemical Engineering(ZK201702);the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)~~
摘    要:双氧水(H2O2)是一种重要的绿色氧化剂,广泛应用于纺织、医疗、废水处理、军事等重要领域.目前, H2O2的工业生产以蒽醌法为主,该法设备投资大、运行成本高,同时工艺涉及大量的有机溶液,活性中间体蒽醌也会发生缓慢降解,产生有毒副产物.与蒽醌法相比,通过负载型贵金属催化剂催化H2与O2反应直接合成H2O2,过程绿色环保且生产工艺简单,引起了各界广泛关注.然而,从热力学上分析, H2和O2更容易反应生成H2O, H2O2只是该反应的中间产物,会继续发生加氢和直接分解反应生成H2O,导致H2和O2的低效利用,开发高H2O2选择性且高反应效率的催化剂已成为氢氧直接合成H2O2研究的重点与难点.目前大部分研究策略旨在通过调控或影响反应中心结构、价态来抑制H2O2的副反应,进而提升H2O2的选择性和反应效率;尽管已取得了良好的进展,但仍需发展新的调控策略来满足工业应用的要求.本课题组前期研究表明,促使H2O2从催化剂上脱附可以有效地提升H2O2的选择性和产率.相比于针对反应中心的调控,不稳定的H2O2从催化剂上快速脱附同样起到抑制H2O2参与副反应的作用.为此,本文提出一种炭量可控的非均一界面改性方法,以常规的Pd/TiO2作为研究对象,借助各种结构表征,发现炭物种在TiO2表面呈非均一分散状态,而且改性对于催化剂的几何结构影响较小;另外,催化剂表面的疏水性会随着碳含量的增加而增加,导致其与H2O2间的吸附能相应变小.反应结果显示,表面非均一的炭化改性技术可以显著提升Pd/TiO2催化剂的H2O2选择性和产率.通过构效关系分析,可知这种改性技术可以保持Pd颗粒与TiO2间相互作用的同时,还可以促进H2O2的快速脱附,进而提升改性Pd/TiO2催化剂的H2O2直接合成效率.该改性方法简单、易控,可拓展应用到其他类型催化剂的H2O2直接合成性能调控与改进.

关 键 词:H2O2直接合成  二氧化钛    非均一界面改性  

Heterogeneous interfacial engineering of Pd/TiO2 with controllable carbon content for improved direct synthesis efficiency of H2O2
Wei Yan,Rui Sun,Meng Li,Licheng Li,Zhuhong Yang,Zelin Hua,Xiaohua Lu,Chang Liu.Heterogeneous interfacial engineering of Pd/TiO2 with controllable carbon content for improved direct synthesis efficiency of H2O2[J].Chinese Journal of Catalysis,2020(2):312-321.
Authors:Wei Yan  Rui Sun  Meng Li  Licheng Li  Zhuhong Yang  Zelin Hua  Xiaohua Lu  Chang Liu
Institution:(State Key Laboratory of Materials-Oriented Chemical Engineering,College of Chemical Engineering,Nanjing Tech University,Nanjing 210009,Jiangsu,China;College of Chemical Engineering,Innovation Research Center of Lignocellulosic Functional Materials,Nanjing Forestry University,Nanjing 210037,Jiangsu,China)
Abstract:Series of heterogeneous interfacial engineered TiO2(C-TiO2) with controllable carbon content were facilely synthesized by incipient-wet impregnation using glucose and subsequent thermal carbonization. The obtained C-TiO2 were used as catalytic supports to load Pd nanoparticles for H2 O2 direct synthesis from H2 and O2. The as-prepared samples were systematically studied by transmission electron microscopy(TEM), X-ray photoelectron spectroscopy(XPS), air isothermal microcalorimeter, temperature-programmed reduction of H2(H2-TPR), and so on. The catalytic results showed that H2 O2 productivity and H2O2 selectivity of Pd/C-TiO2 firstly rose with increasing carbon content and then declined. Pd/C-TiO2 catalyst with 1.89 wt% of carbon content showed the best catalytic performance that had 61.2% of selectivity and 2192 mmol H2O2/g Pd/h of productivity, which were significantly better than those of pristine Pd/TiO2(45.2% and 1827 mmol H2O2/g Pd/h). Various characterization results displayed that the carbon species were heterogeneously dispersed on TiO2 surface. Moreover, no obvious geometric transformation in supports and Pd nanoparticles were observed among different catalysts. The superficial hydrophobicity of Pd/C-TiO2 was gradually promoted with increasing carbon content, which led to the corresponding decrease in adsorption energy of H2O2 with catalysts. According to structure-performance relationship analyses, the heterogeneous interfacial engineering of carbon could maintain the interaction of Pd nanoparticles with TiO2 and simultaneously accelerate the H2O2 desorption. Both factors further determined the excellent H2O2 direct synthesis performance of Pd/C-TiO2.
Keywords:Direct synthesis of H2O2  TiO2  Carbon  Heterogeneous interfacial engineering  Pd
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号