首页 | 本学科首页   官方微博 | 高级检索  
     检索      

三功能策略设计制备具有优异低温抗积碳性能的Ni-CeO2@SiO2催化剂催化甲烷干重整反应
引用本文:林思雪,王晶,米阳阳,杨参有,王政,刘文明,吴代赦,彭洪根.三功能策略设计制备具有优异低温抗积碳性能的Ni-CeO2@SiO2催化剂催化甲烷干重整反应[J].催化学报,2021,42(10):1808-1820.
作者姓名:林思雪  王晶  米阳阳  杨参有  王政  刘文明  吴代赦  彭洪根
作者单位:南昌大学化学学院,资源环境与化工学院,鄱阳湖环境与资源利用教育部重点实验室,江西南昌330031;宁夏大学省部共建煤炭高效利用与绿色化工国家重点实验室,宁夏银川750021
摘    要:随着全球人为温室气体排放量(主要是甲烷和二氧化碳)的增加,全球变暖的趋势逐渐增加,因此,迫切需要通过各种技术来捕获和利用这些温室气体.甲烷干气重整反应(DRM)可以有效地将甲烷和二氧化碳这两种资源丰富、价格低廉的温室气体转化为高附加值化学品,减少它们向大气排放.尽管DRM工艺的应用具有许多优势,但是反应期间碳沉积和活性组分的烧结是阻碍其工业应用的两个主要原因.这些碳沉积物可能覆盖活性中心或阻塞催化剂的孔道,从而导致催化剂活性降低.镍基催化剂因其价格低廉、初始活性高和资源丰富而得到广泛的应用.但应用于DRM反应的Ni基催化剂在反应中容易烧结和积碳,导致催化剂迅速失活.为解决上述问题,本文从三功能策略角度出发,即SiO2壳层的限域作用和Ni-Ce之间的协同作用以及CeO2的消除积碳作用,采用原位一锅法设计合成了一种限域型Ni-CeO2核壳结构催化剂(Ni-CeO2@SiO2).通过X射线衍射、透射电子显微镜、能量色散X射线光谱、N2吸附/脱附、氢气程序升温还原和脱附、氧气程序升温脱附、拉曼光谱、热重分析和原位漫反射红外傅里叶变换光谱测试对催化剂进行了系统的表征,来揭示催化剂的理化性质和反应机理.催化剂应用于甲烷干气重整反应结果表明,在温度区间为550~800℃时,与传统浸渍法合成的催化剂相比,Ni-CeO2@SiO2催化剂具有更高的活性.高温800℃下的稳定性测试结果显示,传统浸渍法合成的催化剂在反应20 h后就出现了大量的积碳且活性下降明显;而Ni-CeO2@SiO2催化剂在800℃下反应100 h后未检测到积碳,并且催化剂中的Ni纳米颗粒的平均粒径从5.01 nm仅增长到5.77 nm,表现出很好的高温抗积碳和耐烧结性能.值得注意的是,Ni-CeO2@SiO2催化剂在低温600℃(形成碳沉积的最可能温度区域)下反应20h后也未检测到积碳的形成,表现出催化剂良好的低温稳定性和抗积碳性能.这可能归因于对Ni-CeO2@SiO2催化剂的三功能作用,即多孔二氧化硅壳层的限域作用、Ni与CeO2之间强的金属-金属氧化物相互作用以及具有丰富活性氧物种CeO2的消除积碳的作用.通过原位漫反射红外傅里叶变换光谱测试来探究反应机理.结果 表明,DRM反应在Ni-CeO2@SiO2催化剂上遵循L-H机理,添加CeO2可以消除碳沉积并促进CO2活化.该三功能策略为设计其他应用于DRM的高性能催化剂提供了指导,有望加快该工艺的工业化.

关 键 词:甲烷干气重整  低温稳定性  抗积碳  三功能策略  二氧化碳利用

Trifunctional strategy for the design and synthesis of a Ni-CeO2@SiO2 catalyst with remarkable low-temperature sintering and coking resistance for methane dry reforming
Sixue Lin,Jing Wang,Yangyang Mi,Senyou Yang,Zheng Wang,Wenming Liu,Daishe Wu,Honggen Peng.Trifunctional strategy for the design and synthesis of a Ni-CeO2@SiO2 catalyst with remarkable low-temperature sintering and coking resistance for methane dry reforming[J].Chinese Journal of Catalysis,2021,42(10):1808-1820.
Authors:Sixue Lin  Jing Wang  Yangyang Mi  Senyou Yang  Zheng Wang  Wenming Liu  Daishe Wu  Honggen Peng
Abstract:In this study,a trifunctional strategy was developed to prepare a confined Ni-based catalyst(Ni-CeO2@SiO2) for dry reforming of methane (DRM) of two main greenhouse gases—CO2 and CH4.The Ni-CeO2@SiO2 catalyst was fabricated by utilizing the confinement effect of the SiO2 shell and the synergistic interaction between Ni-Ce and the decoking effect of CeO2.The catalysts were sys-tematically characterized via X-ray diffraction,N2 adsorption/desorption,transmission electron microscopy,energy dispersive X-ray spectroscopy,hydrogen temperature reduction and desorption set by program,oxygen temperature program desorption,Raman spectroscopy,thermogravimetric analysis,and in situ diffuse reflectance infrared Fourier transform spectroscopy measurements to reveal their physicochemical properties and reaction mechanism.The Ni-CeO2@SiO2 catalyst exhib-ited higher activity and stability than the catalyst synthesized via the traditional impregnation method.In addition,no carbon deposition was detected over Ni-CeO2@SiO2 after a 100 h durability test at 800 ℃,and the average particle size of Ni nanoparticles (NPs) in the catalyst increased from 5.01 to 5.77 nim.Remarkably,Ni-CeO2@SiO2 also exhibited superior low-temperature stability;no coke deposition was observed when the catalyst was reacted at 600 ℃ for 20 h.The high coking and sintering resistance of this confined Ni-based DRM catalyst can be attributed to its trifunctional effect.The trifunctional strategy developed in this study could be used as a guideline to design other high-performance catalysts for CO2 and CH4 dry forming and accelerate their industrialization.
Keywords:Methane dry forming  Low-temperature stability  Coke resistance  Trifunctional strategy  CO2 utilization
本文献已被 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号