首页 | 本学科首页   官方微博 | 高级检索  
     检索      

多金属氧酸盐材料在二氧化碳电催化还原领域中的研究进展
引用本文:都京,马媛媛,谭华桥,康振辉,李阳光.多金属氧酸盐材料在二氧化碳电催化还原领域中的研究进展[J].催化学报,2021,42(6):920-937.
作者姓名:都京  马媛媛  谭华桥  康振辉  李阳光
作者单位:东北师范大学化学学院, 多酸科学教育部重点实验室, 吉林长春130024;河北师范大学化学与材料科学学院, 河北石家庄050024;东北师范大学先进材料研究院, 吉林长春130024;苏州大学功能纳米与软物质研究院, 江苏省碳基功能材料与器件重点实验室, 江苏苏州215213
基金项目:吉林省教育厅基金项目;Innovative Research Group Project of the National Natural Science Foundation of China ;This work was supported by the National Natural Science Foundation of China ;111计划;江苏省高等学校重点学科建设项目;the Collaborative Innovation Center of Suzhou Nano Science & Technology, the Priority Academic Program Development of Jiangsu Higher Education Institutions ;多酸科学教育部重点实验室开放项目;国家MCF能源研究;广东省重点领域研发计划项目;高等学校博士学科点专项科研基金;国家自然科学基金创新研究群体项目;the Fundamental Research Funds for the Central Universities ;吉林省科技发展计划项目;中央高校基础研究基金项目;the Specialized Research Fund for the Doctoral Program of Higher Education ;the Foundation of Jilin Educational Committee ;Natural Science Foundation of Jiangsu Province ;苏州纳米科技协同创新中心;and the Opening Project of Key Laboratory of Polyoxometalate Science of Ministry of Education. 国家自然科学基金;Key-Area Research and Development Program of Guangdong Province ;the National MCF Energy R&D Program ;开发计划;江苏省自然科学基金
摘    要:随着工业发展和全球人口的持续增长,人类对化石燃料的消耗日益增加,从而导致大气中二氧化碳含量的显著增加以及与之相伴的一系列环境问题.电化学还原二氧化碳制备高附加值的燃料和化学品具有稳定的效率和较高的经济可行性等特点,目前已成为一种有前景的策略来缓解当前全球面临的能源短缺和气候变暖问题.然而,电催化二氧化碳还原过程存在反应能垒高和复杂的多电子/质子耦合过程等不足,因此,合理有效的电催化剂设计成为该领域的关键问题.近年,理解和明确电化学二氧化碳还原反应过程的活性起源、选择性调控机制和催化反应机理已成为高效电催化剂设计过程中的重要指导原则.作为一类独特的纳米尺度的金属氧簇,多金属氧酸盐(多酸)已成为二氧化碳还原领域的热点材料.尤其是,多酸明确的结构、优越的电子/质子存储转移能力和二氧化碳吸附活化能力有助于探究二氧化碳还原反应过程中的活性起源和构效机制.因此,利用多酸阐明电化学二氧化碳还原反应中的这些关键问题对于开发高效、可实用化的电催化剂意义重大.本文综述了近年多酸在电催化二氧化碳还原反应中取得的进展,重点介绍了多酸阴离子均相分子催化剂、多酸基无机-有机杂化材料催化剂、多酸电解质溶液、多酸-纳米复合材料在电催化二氧化碳还原反应中的应用.利用密度泛函理论结合原位实验证据推测了可能的反应机理,探讨了多酸对电催化活性和产物选择性的影响,揭示了电子/质子存储-转移过程和多酸表面修饰工程在电催化二氧化碳还原过程中的重要作用.最后,本文还分析了多酸基材料存在的问题与面临的挑战,并对多酸基材料在二氧化碳还原领域的未来发展进行了展望,这对理解电催化二氧化碳还原反应中的关键步骤和开发新型高效的电催化二氧化碳还原电催化剂具有启发意义.

关 键 词:多金属氧酸盐  电催化  二氧化碳还原  电子转移  机理

Progress of electrochemical CO2 reduction reactions over polyoxometalate-based materials
Jing Du,Yuan-Yuan Ma,Huaqiao Tan,Zhen-Hui Kang,Yangguang Li.Progress of electrochemical CO2 reduction reactions over polyoxometalate-based materials[J].Chinese Journal of Catalysis,2021,42(6):920-937.
Authors:Jing Du  Yuan-Yuan Ma  Huaqiao Tan  Zhen-Hui Kang  Yangguang Li
Institution:(Key Laboratory of Polyoxometalate Science of the Ministry of Education,Faculty of Chemistry,Northeast Normal University,Changchun 130024,Jilin,China;Institute of Advanced Materials,Northeast Normal University,Changchun 130024,Jilin,China;Institute of Functional Nano and Soft Materials(FUNSOM),Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices,Soochow University,Suzhou 215123,Jiangsu,China;College of Chemistry and Material Science,Hebei Normal University,Shijiazhuang 050024,Hebei,China)
Abstract:Electrochemical CO2 reduction to value-added fuels and chemicals is recognized as a promising strategy to alleviate energy shortages and global warming owing to its high efficiency and economic feasibility. Recently, understanding the activity origin, selectivity regulation, and reaction mecha-nisms of CO2 reduction reactions (CO2RRs) has become the focus of efficient electrocatalyst design. Polyoxometalates (POMs), a unique class of nanosized metal-oxo clusters, are promising candidates for the development of efficient CO2RR electrocatalysts and, owing to their well-defined structure, remarkable electron/proton storage and transfer ability, and capacities for adsorption and activa-tion of CO2, are ideal models for investigating the activity origin and reaction mechanisms of CO2RR electrocatalysts. In this review, we focus on the activity origin and mechanism of CO2RRs and survey recent advances that were achieved by employing POMs in electrocatalytic CO2RRs. We highlight the significant roles of POMs in the electrocatalytic CO2RR process and the main factors influencing selectivity regulation and catalytic CO2RR performance, including the electrolyte, electron-transfer process, and surface characteristics. Finally, we offer a perspective of the advantages and future challenges of POM-based materials in electrocatalytic CO2 reduction that could inform new ad-vancements in this promising research field.
Keywords:Polyoxometalate  Electrocatalysis  CO2 reduction  Electron transfer  Mechanism
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号