首页 | 本学科首页   官方微博 | 高级检索  
     检索      


(La0.8A0.2)MnO3 (A = Sr,K) perovskite catalysts for NO and C10H22 oxidation and selective reduction of NO by C10H22
Authors:Anne Giroir-Fendler  Sonia Gil  Alexandre Baylet
Institution:Lyon University, Lyon, F-69003, Lyon 1 University, CNRS UMR 5256 IRCELYON, Albert Einstein Avenue, 2 Villeurbanne, F-69622, France
Abstract:In this work, we studied the catalytic activity of LaMnO3 and (La0.8A0.2)MnO3 (A = Sr, K) perovskite catalysts for oxidation of NO and C10H22 and selective reduction of NO by C10H22. The catalytic performances of these perovskites were compared with that of a 2 wt% Pt/SiO2 catalyst. The La site substitution increased the catalytic properties for NO or C10H22 oxidation compared with the non-substituted LaMnO3 sample. For the most efficient perovskite catalyst, (La0.8Sr0.2)MnO3, the results showed the presence of two temperature domains for NO adsorption: (1) a domain corresponding to weakly adsorbed NO, desorbing at temperatures lower than 270 ℃ and (2) a second domain corresponding to NO adsorbed on the surface as nitrate species, desorbing at temperatures higher than 330 ℃. For the Sr-substituted perovskite, the maximum NO2 yield of 80% was observed in the intermediate temperature domain (around 285 ℃). In the reactant mixture of NO/C10H22/O2/H2O/He, (La0.8Sr0.2)MnO3 perovskite showed better performance than the 2 wt% Pt/SiO2 catalyst: NO2 yields reaching 50% and 36% at 290 and 370 ℃, respectively. This activity improvement was found to be because of atomic scale interactions between the A and B active sites, Sr2+ cation and Mn4+/Mn3+ redox couple. Thus, (La0.8Sr0.2)MnO3 perovskite could be an alternative free noble metal catalyst for exhaust gas after treatment.
Keywords:LaMnO3 substituted perovskite  Nitrogen oxide oxidation  Decane oxidation  Hydrocarbons-selective catalytic reduction
点击此处可从《催化学报》浏览原始摘要信息
点击此处可从《催化学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号