首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Study of SU-8 to make a Ni master-mold: Adhesion, sidewall profile, and removal
Authors:Kim Sung-Jin  Yang Haesik  Kim Kyuwon  Lim Yong Taik  Pyo Hyeon-Bong
Institution:Biosensor Group, Electronics and Telecommunications Research Institute (ETRI), Daejeon, Korea. yahokim@umich.edu
Abstract:For disposable microfluidic devices, easy and inexpensive fabrication is essential. Consequently, replication of microfluidic devices, using injection molding or hot embossing, from a master-mold is widely used. However, the conventional master-mold fabrication technique is unsatisfactory in terms of time and costs. In this regard, direct Ni growth (electroplating) from a back plate is promising when the photoresist is well-defined. Here, we demonstrate the use of SU-8 as a photoresist to define the Ni-growth region. We accomplish this application by focusing on the adhesion, the sidewall profile, and the removal of SU-8: the adhesion is enhanced by controlling the exposure dose, the soft-baking time, and by choosing the adhesion-promoting layer; the sidewall profile is regulated by selecting the intensity of each exposed wavelength, showing an aspect ratio of up to 20.9; and, easy removal is achieved by choosing a proper photoresist-stripper. Using the master-mold fabricated by this method, we test the mechanical stability of the features according to the aspect ratio and length; in the hot embossing process, the features are stable in the aspect ratio of up to 5.8 at a length of 200 microm. In addition, the plastic devices fabricated from this method are applied to the passive stop valves, showing a capillary pressure (-0.2 to -7.2 kPa).
Keywords:Master‐mold  Microfluidics  Miniaturization  Polymer microfabrication
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号