首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Nanoparticle‐based capillary electroseparation of proteins in polymer capillaries under physiological conditions
Authors:Christian Nilsson  Ian Harwigsson  Kristian Becker  Jörg P Kutter  Staffan Birnbaum  Staffan Nilsson
Institution:1. Pure and Applied Biochemistry, Center for Chemistry and Chemical Engineering, Lund University, Lund, Sweden;2. Camurus AB, Ideon Science Park Gamma 1, Lund, Sweden;3. Department of Micro and Nanotechnology, Technical University of Denmark, Kongens Lyngby, Denmark;4. Biopharm Support QC, Manufacturing Development, Novo Nordisk A/S, Gentofte, Denmark
Abstract:Totally porous lipid‐based liquid crystalline nanoparticles were used as pseudostationary phase for capillary electroseparation with LIF detection of proteins at physiological conditions using unmodified cyclic olefin copolymer capillaries (Topas®, 6.7 cm effective length). In the absence of nanoparticles, i.e. in CE mode, the protein samples adsorbed completely to the capillary walls and could not be recovered. In contrast, nanoparticle‐based capillary electroseparation resolved green fluorescent protein from several of its impurities within 1 min. Furthermore, a mixture of native green fluorescent protein and two of its single‐amino‐acid‐substituted variants was separated within 2.5 min with efficiencies of 400 000 plates/m. The nanoparticles prevent adsorption by introducing a large interacting surface and by obstructing the attachment of the protein to the capillary wall. A one‐step procedure based on self‐assembly of lipids was used to prepare the nanoparticles, which benefit from their biocompatibility and suspension stability at high concentrations. An aqueous tricine buffer at pH 7.5 containing lipid‐based nanoparticles (2% w/w) was used as electrolyte, enabling separation at protein friendly conditions. The developed capillary‐based method facilitates future electrochromatography of proteins on polymer‐based microchips under physiological conditions and enables the initial optimization of separation conditions in parallel to the chip development.
Keywords:Capillary electrochromatography  Capillary electrophoresis  Nanoparticles  Pseudostationary phase
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号