首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Dissipation,residues and risk assessment of spirotetramat and its four metabolites in citrus and soil under field conditions by LC‐MS/MS
Abstract:A modified Quick, Easy, Cheap, Effective, Rugged and Safe (QuEChERS) method for the simultaneous determination of spirotetramat and its four metabolite residues in citrus, peel, pulp and soil was developed and validated by liquid chromatography with tandem mass spectrometry (LC‐MS/MS). The samples were extracted with acetonitrile (1%, glacial acetic acid, v/v) and purified using primary secondary amine and octadecylsilane. The limit of detection was 0.01–0.13 mg/kg, whereas that of quantification was 0.02–0.40 mg/kg for spirotetramat and its metabolites. The average recoveries of spirotetramat, spirotetramat‐enol, spirotetramat‐mono‐hydroxy, spirotetramat‐enol‐glucoside and spirotetramat‐ketohydroxy in all matrices were 73.33–107.91%, 75.93–114.85%, 76.44–100.78%, 71.46–103.19% and 73.08–105.27%, respectively, with relative standard deviations < 12.32%. The dissipation dynamics of spirotetramat in citrus and soil followed first‐order kinetics, with half‐lives of 2.3–8.5 days in the three sampling locations. The terminal residues of spirotetramat in four matrices at the three locations were measured below the 1.0 mg/kg maximum residue limit set by China, and residues were found to be concentrated on the peel. The risk assessment of citrus was evaluated using risk quotients. The risk quotient values were found to be significantly <1, suggesting that the risk to human health was negligible when using the recommended doses of spirotetramat in citrus. These results could provide guidance for the safe and proper application of spirotetramat in citrus in China.
Keywords:citrus  LC‐MS/MS  metabolites  risk assessment  spirotetramat
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号