首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Theoretical study of lanthanide-based in vivo luminescent probes for detecting hydrogen peroxide
Authors:Miho Hatanaka  Tomonari Wakabayashi
Institution:1. Institute for Research Initiatives, Division for Research Strategy, Graduate School of Science and Technology, Data Science Center, Nara Institute of Science and Technology, Nara, 630-0192 Japan;2. Graduate School of Science and Engineering, Kindai University, Osaka, 577-8502 Japan
Abstract:The 4f-4f emissions from lanthanide trication (Ln3+) complexes are widely used in bioimaging probes. The emission intensity from Ln3+ depends on the surroundings, and thus, the design of appropriate photo-antenna ligands is indispensable. In this study, we focus on two probes for detecting hydrogen peroxide, for which emission intensities from Tb3+ are enhanced chemo-selectively by the H2O2-mediated oxidation of ligands. To understand the mechanism, the Gibbs free energy profiles of the ground and excited states related to emission and quenching are computed by combining our approximation—called the energy shift method—and density functional theory. The different emission intensities are mainly attributed to different activation barriers for excitation energy transfer from the ligand-centered triplet (T1) to the Tb3+-centered excited state. Additionally, quenching from T1 to the ground state via intersystem crossing was inhibited by intramolecular hydrogen bonds only in the highly emissive Tb3+ complexes. © 2018 Wiley Periodicals, Inc.
Keywords:rare earth  density functional theory  excitation energy transfer  intersystem crossing
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号