首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Polarized basis sets of Slater-type orbitals: H to Ne atoms
Authors:Ema I  García De La Vega J M  Ramírez G  López R  Fernández Rico J  Meissner H  Paldus J
Institution:Departamento de Química Física Aplicada, Facultad de Ciencias C-XIV, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
Abstract:We present three Slater-type atomic orbital (STO) valence basis (VB) sets for the first and second row atoms, referred to as the VB1, VB2, and VB3 bases. The smallest VB1 basis has the following structure: 3, 1] for the H and He atoms, 5, 1] for Li and Be, and 5, 3, 1] for the B to Ne series. For the VB2 and VB3 bases, both the number of shells and the number of functions per shell are successively increased by one with respect to VB1. With the exception of the H and Li atoms, the exponents for the VB1 bases were obtained by minimizing the sum of the Hartree-Fock (HF) and frozen-core singles and doubles configuration interaction (CISD FC) energies of the respective atoms in their ground state. For H and Li, we minimized the sum of the HF and CISD FC energies of the corresponding diatoms (i.e., of H(2) or Li(2)) plus the ground-state energy of the atom. In the case of the VB2 basis sets, the sum that was minimized also included the energies of the positive and negative ions, and for the VB3 bases, the energies of a few lowest lying excited states of the atom. To account for the core correlations, the VBx (x = 1, 2, and 3) basis sets for the Li to Ne series were enlarged by one function per shell. The exponents of these extended (core-valence, CV) basis sets, referred to, respectively, as the CVBx (x = 1, 2, and 3) bases, were optimized by relying on the same criteria as in the case of the VBx (x = 1, 2, and 3) bases, except that the full CISD rather than CISD FC energies were employed. We show that these polarized STO basis sets provide good HF and CI energies for the ground and excited states of the atoms considered, as well as for the corresponding ions.
Keywords:Slater‐type atomic orbital basis sets  basis set optimization  electron affinities  ionization and excitation energies
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号