首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Protein:Ligand binding free energies: A stringent test for computational protein design
Authors:Karen Druart  Zoltan Palmai  Eyaz Omarjee  Thomas Simonson
Institution:Laboratoire De Biochimie (UMR CNRS 7654), Department of Biology, Ecole Polytechnique, Palaiseau, France
Abstract:A computational protein design method is extended to allow Monte Carlo simulations where two ligands are titrated into a protein binding pocket, yielding binding free energy differences. These provide a stringent test of the physical model, including the energy surface and sidechain rotamer definition. As a test, we consider tyrosyl‐tRNA synthetase (TyrRS), which has been extensively redesigned experimentally. We consider its specificity for its substrate l ‐tyrosine (l ‐Tyr), compared to the analogs d ‐Tyr, p‐acetyl‐, and p‐azido‐phenylalanine (ac‐Phe, az‐Phe). We simulate l ‐ and d ‐Tyr binding to TyrRS and six mutants, and compare the structures and binding free energies to a more rigorous “MD/GBSA” procedure: molecular dynamics with explicit solvent for structures and a Generalized Born + Surface Area model for binding free energies. Next, we consider l ‐Tyr, ac‐ and az‐Phe binding to six other TyrRS variants. The titration results are sensitive to the precise rotamer definition, which involves a short energy minimization for each sidechain pair to help relax bad contacts induced by the discrete rotamer set. However, when designed mutant structures are rescored with a standard GBSA energy model, results agree well with the more rigorous MD/GBSA. As a third test, we redesign three amino acid positions in the substrate coordination sphere, with either l ‐Tyr or d ‐Tyr as the ligand. For two, we obtain good agreement with experiment, recovering the wildtype residue when l ‐Tyr is the ligand and a d ‐Tyr specific mutant when d ‐Tyr is the ligand. For the third, we recover His with either ligand, instead of wildtype Gln. © 2015 Wiley Periodicals, Inc.
Keywords:aminoacyl‐tRNA synthetase  molecular dynamics  continuum electrostatics
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号