首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Molecular dynamics simulation of cellobiose in water
Authors:BJ Hardy  A Sarko
Abstract:The conformational behavior of cellobiose was studied by molecular dynamics simulation in a periodic box of waters. Several different initial conformations were used and the results compared with equivalent vacuum simulations. The average positions and rms fluctuations within single torsional conformations of cellobiose were affected only slightly by the solvent. However, water damped local torsional librations and transitions. The conformational energies of the solute and their fluctuations were also sensitive to the presence of solvent. Intramolecular hydrogen bonding was weakened relative to that observed in vacuo due to competition with solvating waters. All cellobiose hydroxyl groups participated in intermolecular hydrogen bonds with water, with approximately eight hydrogen bonds formed per glucose ring. The hydrogen bonding was predominantly between water hydrogens and solute hydroxyl oxygens. Intermolecular hydrogen bonding to ring and bridge oxygens was seldom present. The diffusion coefficients of both water and solute agree closely with experimental values. Water interchanged rapidly between the solvating first shell and the bulk on the picosecond time scale. © 1993 John Wiley & Sons, Inc.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号