首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Thermophysical properties of azomethine ether main-chain liquid crystalline polymers at pressures to 200 MPa
Authors:Youssef A Fakhreddine  Paul Zoller
Abstract:This article reports on an experimental investigation of the equation of state and the transition behavior of main-chain thermotropic liquid crystalline polymers over a wide temperature range, and at pressures to 200 MPa. The materials studied were a series of azomethine ether polymers. A varying number n (= 4, 7, 8, 9, 10 and 11) of methylene spacer units in the backbone provided systematic variation of the structure. Experimental techniques used included high-pressure dilatometry (PVT measurements) to 200 MPa, high-pressure differential thermal analysis, also to 200 MPa, and conventional (atmospheric-pressure) differential scanning calorimetry (DSC). The equation of state of the materials can be well represented by the Tait equation in distinct regions, separated by a glass transition, Tg(P), a first-order transition to a nematic state, Tk-n(P), and a first-order transition to an isotropic melt state Tc(P). The atmospheric pressure values of Tk-n and Tc decreased with increasing number of spacer units and showed a clear odd-even effect. Tg and Tk-n both increased with pressure. The pressure dependence of Tc could not be observed due to the onset of degradation in the same temperature region. On isobaric cooling at 3°C/min, the crystallization from the nematic state occurred a few tens of degrees below Tk-n. This supercooling was independent of pressure for some materials, while for others it increased with increasing pressure. The values of the enthalpy and entropy associated with the first-order transition into the nematic state were lower than those of typical isotropic polymers at their melting transitions. The transition enthalpy did not have any systematic variation with increasing number of spacer units. Values of the transition enthalpy calculated from the Ciapeyron equation did not always agree with the values measured by DSC. This may be due to the two-phase nature of the low-temperature state. At the transition to the isotropic state, the transition enthalpy at P = 0 decreased with n and showed an odd-even effect. © 1994 John Wiley & Sons, Inc.
Keywords:liquid crystalline polymers  azomethine ether  thermophysical  equation of state  pressure-volume-temperature (PVT)  high-pressure dilatometry  high-pressure differential thermal analysis (HP-DTA)  isothermal compressibility  thermal expansivity
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号