首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Molecular dynamic study of dielectric polarization and ferroelectricity in a model polar polymer
Authors:Jeffrey P Calame
Institution:Naval Research Laboratory, Washington, DC
Abstract:Molecular dynamics simulations are used to explore the polarization response of a lamellar crystal consisting of folded chains of a highly simplified model polar polymer. The system is based on a united atom model of polyethylene with constrained bond lengths and bond angles, and it is endowed with artificial partial charges placed on the united atoms to give it a simple polar character. Simulations performed with various temperatures, electric field directions, and electric field application histories reveal a complicated sequence of reorientation processes, including pronounced ferroelectric behavior. The sequence includes a weak, temperature‐independent prompt response, and a slow‐rising delay regime with stretched exponential behavior and thermally‐activated reorientation parameters consistent with trans‐gauche (TG) barrier crossings in the amorphous phase. When the delay regime has progressed sufficiently, a primary large‐amplitude response due to organized rotation of large subsegments in the crystalline phase occurs in a rapid manner that requires relatively few TG barrier crossings. A final, extremely slow rise in residual polarization completes the sequence. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 740–759
Keywords:alkanes  dielectric relaxation  electrostatic interactions  ferroelectric polymer  lamella  molecular dynamics  semicrystalline polymer  slow dynamics  torsional dynamics
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号