首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Adsorption of bacterial surface polysaccharides on mineral oxides is mediated by hydrogen bonds
Authors:BA Jucker  H Harms  SJ Hug  AJB Zehnder
Institution:

Swiss Federal Institute for Environmental Science and Technology (EAWAG), and Swiss Federal Institute of Technology (ETH), Überlandstrasse 133, CH-8600, Dübendorf, Switzerland

Abstract:Adhesion of bacterial cells to solid surfaces is often largely affected by bacterial surface polymers. In this study, we investigated the adsorption of three different O-antigens isolated from bacterial lipopolysaccharides on TiO2, Al2O3, and SiO2. The O-antigens of Escherichia coli 08 DSM 46243 and Citrobacter freundii PCM 1487 had high affinity for TiO2 and low affinity for Al2O3, whereas the O-antigens of Stenotrophomonas maltophilia 70401 had low affinities for both surfaces. Adsorption on SiO2 was low for all polysaccharides. The dependence of the adsorption on the molecular mass of polysaccharides was investigated with dextrans of various chain lengths. The affinity increased with the molecular mass. The affinity of the dextrans was reduced compared with the O-antigen of E. coli, which had similar chemical composition and molecular mass. The adsorption of the E. coli and C. freundii O-antigens on Al2O3 and TiO2 was irreversible, whereas for the S. maltophilia O-antigen it was partially reversible. The reversibility of dextran adsorption decreased with increasing molecular mass.

Infrared spectroscopy showed that all bacterial O-antigens and the dextrans formed hydrogen bonds with surface hydroxyl groups or interacted with surface-bound water of TiO2, Al2O3, and SiO2. A concentration-dependent mechanism of adsorption was observed with TiO2. At low polysaccharide concentrations, the surface water molecules ware replaced by the polysaccharides, and at increased concentration the surface hydroxyl groups were involved in the formation of hydrogen bonds. At higher surface coverages, the adsorbed polysaccharides formed loops between the few adsorbed units.

Keywords:Bacterial adhesion  Lipopolysaccharides  Polymer interactions  Hydrogen bonds
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号