首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Degradation of p-nitrophenol (PNP) in aqueous solution by mFe/Cu-air-PS system
Authors:Heng Zhang  Qingqing Ji  Leiduo Lai  Gang Yao  Bo Lai
Institution:State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China; Institute of Environmental Engineering, RWTH Aachen University, Aachen, Germany
Abstract:In this study, batch experiments were conducted to investigate the performance of microscale Fe/Cu bimetallic particles-air-persulfate system (mFe/Cu-air-PS) for p-nitrophenol (PNP) treatment in aqueous solution. First, the optimal operating parameters (i. e. , aeration rate of 1.0 L/min, theoretical Cu mass loading (TMLCu) of 0.110 g Cu/g Fe, mFe/Cu dosage of 15 g/L, PS total dosage of 15 mmol/L, feeding times of PS of 5, initial pH 5.4) were obtained successively by single-factor experiments. Under the optimal conditions, high COD and TOC removal efficiencies (71.0%, 65.8%) were obtained after 60 min treatment. Afterword, compared with control experiments (i. e. , mFe/Cu, air, PS, mFe/Cu-air, mFe/Cu-PS, air-PS and mFe-air-PS), mFe/Cu-air-PS system exerted superior performance for pollutants removal due to the synergistic effect between mFe/Cu, air and PS. In addition, the results of control experiments and radical quenching experiments indicate this reinforcement by feeding of PS was greater than by aeration in mFe/ Cu-air-PS system. Furthermore, the degradation intermediates of PNP in mFe/Cu-air-PS process were identified and measured by HPLC. Based on the detected intermediates, the degradation pathways of PNP were proposed comprehensively, which revealed that toxic and refractory PNP in aqueous solution could be decomposed effectively and transformed into lower toxicity intermediates. As a result, mFe/Cu-air-PS system with the performance of oxidation combined reduction can be also a potential technology for the treatment of toxic and refractory PNP contained wastewater.
Keywords:p-Nitrophenol (PNP)  Microscale Fe/Cu bimetallic particles (mFe/Cu)  Persulfate (PS)  Air aeration  mFe/Cu-air-PS system  
本文献已被 维普 ScienceDirect 等数据库收录!
点击此处可从《中国化学快报》浏览原始摘要信息
点击此处可从《中国化学快报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号