首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Wearable membranes from zirconium-oxo clusters cross-linked polymer networks for ultrafast chemical warfare agents decontamination
Institution:1. South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510641, China;2. State Key Laboratory of NBC Protection for Civilian, Research Institution of Chemical Defense, Beijing 100191, China
Abstract:The urgent need for immediate personal protection against chemical warfare agents (CWAs) spurs the requirement on robust and highly efficient catalytic systems that can be conveniently integrated to wearable devices. Herein, as a new concept for CWA decontamination catalyst design, sub-nanoscale, catalytically active zirconium-oxo molecular clusters are covalently integrated in flexible polymer network as crosslinkers for the full exposure of catalytic sites as well as robust framework structures. The obtained membrane catalysts exhibit high swelling ratio with aqueous content as 84 wt% and therefore, demonstrate quasi-homogeneous catalytic activity toward the rapid hydrolysis of both CWA, soman (GD) (t1/2 = 5.0 min) and CWA simulant, methyl paraoxon (DMNP) (t1/2 = 8.9 min). Meanwhile, due to the covalent nature of cross-linkages and the high flexibility of polymer strands, the membranes possess promising mechanical strength and toughness that can stand the impact of high gas pressures and show high permeation for both CO2 and O2, enabling their extended applications in the field of collective/personal protective materials with body comfort.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号