首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Enzyme-modified nanoparticles using biomimetically synthesized silica
Authors:Patricia Zamora  Arntzazu Narvez  Elena Domínguez
Institution:aDepartment of Analytical Chemistry and Chemical Engineering, Faculty of Pharmacy, University of Alcalá, 28871 Alcalá de Henares, Spain
Abstract:The entrapment of enzymes within biomimetic silica nanoparticles offers unique and simple immobilization protocols that merge the stability of proteins confined in solid phases with the high loading and reduced diffusion limitations inherent to nano-sized structures. Herein, we report on the biomimetic silica entrapment of chemically derivatized horseradish peroxidase for amperometric sensing applications. Scanning electron microscopy shows evidence of the formation of enzyme-modified nanospheres using poly(ethylenimine) as a template for silicic acid condensation. When these nanospheres are directly deposited on graphite electrodes, chemically modified anionic peroxidase shows direct electron transfer at 0 mV vs Ag|AgCl. Microgravimetric measurements as well as SEM images demonstrate that negatively charged peroxidase is also entrapped when silica precipitates at gold electrodes are modified with a self-assembled monolayer of poly(ethylenimine). Electrostatic interactions may play a crucial role for efficient enzyme entrapment and silica condensation at the PEI template monolayer. The in-situ biomimetically synthesized peroxidase nanospheres are catalytically active, enabling direct bioelectrocatalysis at 0 mV vs Ag|AgCl with long-term stability.
Keywords:Biosilicification  Nanoparticles  Redox enzymes  SAMs  Direct electron transfer  Biosensors
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号